

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

FUZZ TESTING OF INDUSTRIAL NETWORK
PROTOCOLS IN PROGRAMMABLE LOGIC

CONTROLLERS

by

James J. Gormley III

December 2017

Thesis Advisor: Thuy D. Nguyen
Co-Advisor: Cynthia Irvine

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2017

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
FUZZ TESTING OF INDUSTRIAL NETWORK PROTOCOLS IN
PROGRAMMABLE LOGIC CONTROLLERS

5. FUNDING NUMBERS

6. AUTHOR(S) James J. Gormley III

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Daily operations of U.S. Navy afloat and ashore systems are heavily reliant on industrial control
systems (ICSs) to manage critical infrastructure services. Programmable logic controllers (PLCs) are vital
components in these cyber-physical systems. The industrial network protocols used to communicate
between nodes in a control network are complex and vulnerable to a myriad of cyber attacks, as reported
by Department of Homeland Security Industrial Control Systems Cyber Emergency Response Team. This
thesis utilizes protocol fuzz testing techniques to investigate potential vulnerabilities in the Allen-
Bradley/Rockwell Automation (AB/RA) MicroLogix 1100 PLC through its implementation of
EtherNet/IP, Common Industrial Protocol (CIP), and Programmable Controller Communication
Commands (PCCC) communication protocols. This research also examines whether cross-generational
vulnerabilities exist in the more advanced AB/RA ControlLogix 1756-L71 PLC. Our results discover
several deviations from the EtherNet/IP and PCCC specifications in the MicroLogix 1100 implementation
of these protocols. Additionally, we find that a recently disclosed denial-of-service vulnerability that
renders the MicroLogix 1100 inoperable does not trigger a similar fault condition in the ControlLogix
PLC.

14. SUBJECT TERMS
industrial control system, protocol fuzz testing, PLC, EtherNet/IP, CIP, PCCC, MicroLogix,
ControlLogix

15. NUMBER OF
PAGES

175
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

FUZZ TESTING OF INDUSTRIAL NETWORK PROTOCOLS IN
PROGRAMMABLE LOGIC CONTROLLERS

James J. Gormley III
Lieutenant Commander, United States Navy

B.S., Villanova University, 2005
M.P.S., The George Washington University, 2013

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN CYBER SYSTEMS AND OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
December 2017

Approved by: Thuy D. Nguyen
Thesis Advisor

Dr. Cynthia Irvine
Co-Advisor

Dr. Dan Boger
Chair, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Daily operations of U.S. Navy afloat and ashore systems are heavily reliant on

industrial control systems (ICSs) to manage critical infrastructure services.

Programmable logic controllers (PLCs) are vital components in these cyber-physical

systems. The industrial network protocols used to communicate between nodes in a

control network are complex and vulnerable to a myriad of cyber attacks, as reported by

Department of Homeland Security Industrial Control Systems Cyber Emergency

Response Team. This thesis utilizes protocol fuzz testing techniques to investigate

potential vulnerabilities in the Allen-Bradley/Rockwell Automation (AB/RA)

MicroLogix 1100 PLC through its implementation of EtherNet/IP, Common Industrial

Protocol (CIP), and Programmable Controller Communication Commands (PCCC)

communication protocols. This research also examines whether cross-generational

vulnerabilities exist in the more advanced AB/RA ControlLogix 1756-L71 PLC. Our

results discover several deviations from the EtherNet/IP and PCCC specifications in the

MicroLogix 1100 implementation of these protocols. Additionally, we find that a recently

disclosed denial-of-service vulnerability that renders the MicroLogix 1100 inoperable

does not trigger a similar fault condition in the ControlLogix PLC.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. RELEVANCE TO THE NAVY ..2
C. OBJECTIVES ..3
D. THESIS ORGANIZATION ..3

II. BACKGROUND ..5
A. COMMON INDUSTRIAL PROTOCOL (CIP)5
B. ETHERNET/INDUSTRIAL PROTOCOL (ETHERNET/IP)7
C. PROGRAMMABLE CONTROLLER COMMUNICATION

COMMANDS (PCCC) ..8
D. FUZZ TESTING ..9
E. ICS FUZZERS ...10
F. SCAPY ..10
G. PREVIOUS SCAPY-BASED FUZZING ...10
H. ALLEN-BRADLEY / ROCKWELL AUTOMATION PLCS

(MICROLOGIX 1100 AND CONGROLLOGIX 5570)11

III. DESIGN ..13
A. OBJECTIVES ..13
B. METHODOLOGY ..13
C. TEST ENVIRONMENT ...17

IV. IMPLEMENTATION AND TEST PLAN...19
A. FUZZER IMPLEMENTATION ..19

1. FUZZER MODIFICATIONS FOR MICROLOGIX19
2. FUZZER MODIFICATIONS FOR CONTROLLOGIX20

B. ENIP FUZZING TEST PLAN ..20
1. ENIP ListServices Command ...22
2. ENIP UnRegisterSession Command ..23
3. ENIP SendRRData Command..25
4. ENIP SendUnitData Command ..28
5. ENIP Reserved for Legacy Use Commands30
6. ENIP Reserved for Future Use Commands31

C. CIP FUZZING TEST PLAN ..33
1. CIP Get_Attributes_All ...34
2. CIP Get_Attribute_List ...35

 viii

3. CIP Get_Attribute_Single ...36
4. CIP Find_Next_Object_Instance ..38

D. PCCC FUZZING TEST PLAN ..40
1. PCCC Echo Command ..42
2. PCCC Protected Typed File Read ..44
3. PCCC Protected Typed File Write ...45
4. PCCC Protected Typed Logical Write with Three

Address Fields ..47
5. PCCC Unprotected Read ..49
6. PCCC Diagnostic Status ..51
7. PCCC Read Diagnostic Counters ...52
8. PCCC Restart ...54
9. PCCC Download Completed ..56
10. PCCC Protected Logical Read with Three Address Fields

Command on ControlLogix ..58

V. TEST ANALYSIS ..61
A. ENIP TEST RESULTS ...61

1. ENIP ListServices Results ...64
2. ENIP UnRegisterSession Results ..64
3. ENIP SendRRData Results ...66
4. ENIP SendUnitData Results ...68
5. ENIP Reserved for Legacy Use Results68
6. ENIP Reserved for Future Use Results69

B. CIP TEST RESULTS ..69
1. CIP Get_Attributes_All Results ...70
2. CIP Get_Attribute_List Results ...72
3. CIP Get_Attribute_Single Results..74
4. CIP Find_Next_Object_Instance Results74

C. PCCC TEST RESULTS ..75
1. PCCC Echo Results ...78
2. PCCC Protected Typed File Read Results79
3. PCCC Protected Typed File Write Results79
4. PCCC Protected Logical Write with Three Address

Fields Results ..79
5. PCCC Unprotected Read Results ...79
6. PCCC Diagnostic Status Results ..80
7. PCCC Read Diagnostic Counters Results80
8. PCCC Restart Results ...80
9. PCCC Download Completed Results ...81

 ix

10. PCCC Protected Logical Read with Three Address Fields
on ControlLogix Results ..81

D. DISCUSSION ...82

VI. CONCLUSION AND FURTHER WORK ..85
A. SUMMARY ..85
B. FUTURE WORK ...86

APPENDIX A. ENIP COMMAND RESPONSES ...87
A. ENIP LISTSERVICES TEST CASES ...87
B. ENIP UNREGISTERSESSION TEST CASES.....................................91
C. ENIP SENDRRDATA TEST CASES ..94
D. ENIP SENDUNITDATA TEST CASES ..99
E. ENIP RESERVED FOR LEGACY USE TEST CASES104
F. ENIP RESERVED FOR FUTURE USE TEST CASES105

APPENDIX B. CIP COMMAND RESPONSES ..107
A. CIP GET_ATTRIBUTES_ALL TEST CASES107
B. CIP GET_ATTRIBUTE_LIST TEST CASES109
C. CIP GET_ATTRIBUTE_SINGLE TEST CASES116
D. CIP FIND_NEXT_OBJECT_INSTANCE TEST CASES120

APPENDIX C. PCCC COMMAND RESPONSES ...125
A. PCCC ECHO TEST CASES ..125
B. PCCC PROTECTED TYPED FILE READ TEST CASES130
C. PCCC PROTECTED TYPED FILE WRITE TEST CASES132
D. PCCC PROTECTED LOGICAL WRITE WITH THREE

ADDRESS FIELDS TEST CASES ..134
E. PCCC UNPROTECTED READ TEST CASES137
F. PCCC DIAGNOSTIC STATUS TEST CASES138
G. PCCC READ DIAGNOSTIC COUNTERS TEST CASES139
H. PCCC RESTART TEST CASES ...141
I. PCCC DOWNLOAD COMPLETED TEST CASES141
J. PCCC PROTECTED LOGICAL READ WITH THREE

ADDRESS FIELDS TEST CASES ..142

LIST OF REFERENCES ..145

INITIAL DISTRIBUTION LIST ...149

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. CIP Network Architecture Stack. Source: [15]. ...6

Figure 2. CIP Object Model. Source: [23]. ...7

Figure 3. EtherNet/IP Packet Encapsulation. Source: [25]. ..8

Figure 4. MicroLogix 1100 PLC. Source: [39]. ..11

Figure 5. ControlLogix PLC. Source: [40]..12

Figure 6. MicroLogix Testing Environment ...18

Figure 7. ControlLogix Testing Environment ...18

Figure 8. An Example ENIP ListServices Request over TCP Packet22

Figure 9. Hexadecimal View of Example ENIP ListServices Request over
TCP Packet...23

Figure 10. An Example ENIP ListServices Request over UDP Packet23

Figure 11. Hexadecimal View of Example ENIP ListServices Request over
UDP Packet ..23

Figure 12. An Example ENIP UnRegisterSession Request over TCP Packet24

Figure 13. Hexadecimal View of Example TCP ENIP UnRegisterSession
Request Packet ...25

Figure 14. An Example ENIP UnRegisterSession Request over UDP Packet.25

Figure 15. Hexadecimal View of Example ENIP UnRegisterSession Request
over UDP Packet ..25

Figure 16. An Example ENIP SendRRData Request over TCP with an
Encapsulated CIP Forward Open Request ...27

Figure 17. Hexadecimal View of Example ENIP SendRRData Request over
TCP Packet...28

Figure 18. An Example ENIP SendUnitData Request over TCP with an
Encapsulated CIP Get_Attribute_All Request ...29

 xii

Figure 19. Hexadecimal View of Example EtherNet/IP SendUnitData Request
over TCP Packet ..29

Figure 20. An Example ENIP Legacy Use Request over TCP30

Figure 21. Hexadecimal View of Example ENIP Legacy Use Request over TCP
Packet ...30

Figure 22. An Example ENIP Legacy Use Request over UDP.31

Figure 23. Hexadecimal View of Example ENIP Legacy Use Request over
UDP Packet ..31

Figure 24. An Example ENIP Future Use Request over TCP.....................................32

Figure 25. Hexadecimal View of Example ENIP Future Use Request over TCP
Packet ...32

Figure 26. An Example UDP ENIP Future Use Request ..32

Figure 27. Hexadecimal View of Example UPD ENIP Future Use Response
Packet ...32

Figure 28. An Example CIP Get_Attributes_All Request over TCP34

Figure 29. Hexadecimal View of Example CIP Get_Attributes_All Request
over TCP Packet ..34

Figure 30. An Example CIP Get_Attribute_List Request over TCP35

Figure 31. Hexadecimal View of Example CIP Get_Attribute_List Request
over TCP Packet ..36

Figure 32. An Example CIP Get_Attribute_Single Request over TCP37

Figure 33. Hexadecimal View of Example CIP Get_Attribute_Single Request
over TCP Packet ..37

Figure 34. An Example CIP Find_Next_Object_Instance Request over TCP39

Figure 35. Hexadecimal View of Example CIP Find_Next_Object_Instance
Request over TCP Packet...39

Figure 36. An Example PCCC Echo Request with Two Data Bytes over TCP43

Figure 37. Hexadecimal View of Example PCCC Echo Request over TCP
Packet. ..43

 xiii

Figure 38. An Example PCCC Protected Typed File Read Request44

Figure 39. Hexadecimal View of Example PCCC Protected Typed File Read
Packet ...45

Figure 40. An Example PCCC Protected Typed File Write Request46

Figure 41. Hexadecimal View of Example PCCC Protected Typed File Write
Packet ...46

Figure 42. An Example PCCC Protected Typed Logical Write with Three
Address Fields Request ..48

Figure 43. Hexadecimal View of Example PCCC Protected Typed Logical
Write with Three Address Fields Request over TCP Packet49

Figure 44. An Example PCCC Unprotected Read Request ..50

Figure 45. Hexadecimal View of Example PCCC Unprotected Read Packet50

Figure 46. An Example PCCC Diagnostic Status over TCP Request51

Figure 47. Hexadecimal View of Example PCCC Diagnostic Status Request
over TCP Packet ..52

Figure 48. An Example PCCC Read Diagnostic Counters Request53

Figure 49. Hexadecimal View of Example PCCC Read Diagnostic Counters
Request Packet ...54

Figure 50. An Example PCCC Restart Request ..55

Figure 51. Hexadecimal View of Example PCCC Restart Request Packet56

Figure 52. An Example PCCC Download Completed Request57

Figure 53. Hexadecimal View of Example PCCC Download Completed
Request Packet ...57

Figure 54. An Example PCCC Protected Logical Read with Three Address
Fields Request ..59

Figure 55. Hexadecimal View of Example PCCC Protected Logical Read with
Three Address Fields Request Packet ..59

Figure 56. ListServices Response over TCP (Fuzzed Session Handle)87

Figure 57. ListServices Response over UDP (Fuzzed Session Handle)88

 xiv

Figure 58. ListServices Response over TCP (Fuzzed Status)88

Figure 59. ListServices Response over UDP (Fuzzed Status)89

Figure 60. ListServices Response over TCP (Fuzzed Sender Context)89

Figure 61. ListServices Response over UDP (Fuzzed Sender Context)90

Figure 62. ListServices Response over TCP (Fuzzed Options)90

Figure 63. ListServices Response over UDP (Fuzzed Options)91

Figure 64. UnRegisterSession Response over TCP (Fuzzed Session Handle)91

Figure 65. UnRegisterSession Response over TCP (Fuzzed Status)92

Figure 66. UnRegisterSession Response over TCP (Fuzzed Sender Context)92

Figure 67. UnRegisterSession Response over TCP (Fuzzed Options)93

Figure 68. CIP Forward Open Response Following ENIP UnRegisterSession
Request with Fuzzed Options Field ...93

Figure 69. UnRegisterSession Response over UDP (Functionality Test)94

Figure 70. SendRRData Request over TCP (Fuzzed Session Handle)94

Figure 71. SendRRData Response over TCP (Fuzzed Session Handle)95

Figure 72. SendRRData Request over TCP (Fuzzed Status)95

Figure 73. SendRRData Response over TCP (Fuzzed Status)96

Figure 74. SendRRData Response over TCP (Fuzzed Sender Context)96

Figure 75. SendRRData Request over TCP (Fuzzed Options)97

Figure 76. SendRRData Response over TCP (Fuzzed Options)97

Figure 77. SendRRData Response over TCP (Fuzzed Interface Handle)98

Figure 78. SendRRData Request over TCP (Fuzzed Timeout)98

Figure 79. SendRRData Response over TCP (Fuzzed Timeout)99

Figure 80. SendUnitData Request over TCP (Fuzzed Session Handle)......................99

Figure 81. SendUnitData Response over TCP (Fuzzed Session Handle)100

xv

Figure 82. SendUnitData Request over TCP (Fuzzed Status: 0x0000FFFF)100

Figure 83. SendUnitData Response over TCP (Fuzzed Status: 0x0000FFFF)101

Figure 84. SendUnitData Response over TCP (Fuzzed Sender Context)101

Figure 85. SendUnitData Request over TCP (Fuzzed Options)102

Figure 86. SendUnitData Response over TCP (Fuzzed Options)102

Figure 87. SendUnitData Response over TCP (Fuzzed Interface Handle)103

Figure 88. SendUnitData Request over TCP (Fuzzed Timeout)103

Figure 89. SendUnitData Response over TCP (Fuzzed Timeout)104

Figure 90. Reserved for Legacy Use Response over TCP (Fuzzed Command
Field) ..104

Figure 91. Reserved for Legacy Use Response over UDP (Fuzzed Command
Field) ..105

Figure 92. Reserved for Future Use Response over TCP (Fuzzed Command
Field) ..105

Figure 93. Reserved for Future Use Response over UDP (Fuzzed Command
Field) ..106

Figure 94. Get_Attributes_All Response over TCP (Class 0x01, Instance 0x01)107

Figure 95. Get_Attributes_All “Service Not Supported” Response over TCP
(Class 0x06, Instance 0x01) ...108

Figure 96. Get_Attributes_All “Path Destination Unknown” Response over
TCP (Class 0x28, Instance 0x01)...108

Figure 97. Get_Attributes_All “Path Destination Unknown” Response over
TCP (Class 0x01, Instance 0x16)...109

Figure 98. Get_Attributes_All Response over TCP (Class 0x01, Instance 0x00)109

Figure 99. Get_Attribute_List Response over TCP (Class 0x01, Instance 0x01,
Attribute 0x01) ...110

Figure 100. Get_Attribute_List Response over TCP (Class 0x7F, Instance 0x01,
Attribute 0x01) ...110

xvi

Figure 101. Get_Attribute_List “Service Not Supported” Response over TCP
(Class 0x01, Instance 0x01, Attribute 0x01) ...111

Figure 102. Get_Attribute_List “Path Destination Unknown” Response over
TCP (Class 0x01, Instance 0x01, Attribute 0x01)112

Figure 103. Get_Attribute_List “Service Not Supported” Response over TCP
(Class 0x01, Instance 0x01, Attribute 200) ...113

Figure 104. Get_Attribute_List Request over TCP (Attribute_count: 223)114

Figure 105. Get_Attribute_List Response over TCP (Attribute_count: 223)115

Figure 106. Get_Attribute_List Request over TCP (Attribute_count: 224)115

Figure 107. Get_Attribute_List Response over TCP (Attribute_count: 224)116

Figure 108. Get_Attribute_Single “Service Not Supported” Response over TCP116

Figure 109. Get_Attribute_Single “Path Destination Unknown” Response over
TCP ..117

Figure 110. Get_Attribute_Single “Attribute Not Supported” Response over TCP ...118

Figure 111. Get_Attribute_Single “Service Not Supported” Response over TCP118

Figure 112. Get_Attribute_Single “Path Destination Unknown” Response over
TCP ..119

Figure 113. Get_Attribute_Single “Attribute Not Supported” Response over TCP ...119

Figure 114. Find_Next_Object_Instance “Service Not Supported” Response over
TCP ..120

Figure 115. Find_Next_Object_Instance “Path Destination Unknown” Response
over TCP ..121

Figure 116. Find_Next_Object_Instance “Service Not Supported” Response over
TCP ..122

Figure 117. Find_Next_Object_Instance “Path Destination Unknown” Response
over TCP ..122

Figure 118. Find_Next_Object_Instance “Service Not Supported” Response
over TCP ..123

Figure 119. Echo Response over TCP (0 Bytes Attached) ...125

xvii

Figure 120. Echo Response over TCP (243 Bytes Attached)126

Figure 121. Echo Response over TCP (8 Bytes Fuzzed) ..126

Figure 122. Echo Response over TCP (9 Bytes Fuzzed) ..127

Figure 123. Echo Response over TCP (10 Bytes Fuzzed) ..127

Figure 124. Echo Response over TCP (40 Bytes Fuzzed) ..128

Figure 125. Echo Response over TCP (243 Bytes Fuzzed) ..128

Figure 126. Echo Response over TCP (Maximum Number of Bytes without
Error Message: 247 Bytes Fuzzed) ..129

Figure 127. Echo Response over TCP (248 Bytes Fuzzed) ..129

Figure 128. Echo Response over TCP (256 Bytes Fuzzed) ..130

Figure 129. Protected Typed File Read Response over TCP (Size Fuzzed)130

Figure 130. Protected Typed File Read Response over TCP (Tag Fuzzed)131

Figure 131. Protected Typed File Read Response over TCP (Offset Fuzzed)131

Figure 132. Protected Typed File Read Response over TCP (File Type Fuzzed)132

Figure 133. Protected Typed File Write Response over TCP (Size Fuzzed)132

Figure 134. Protected Typed File Write Response over TCP (Tag Fuzzed)133

Figure 135. Protected Typed File Write Response over TCP (Offset Fuzzed)133

Figure 136. Protected Typed File Write Response over TCP (File Type Fuzzed)134

Figure 137. Protected Typed File Write Response over TCP (Data Fuzzed)134

Figure 138. Protected Logical Write with Three Address Fields Response over
TCP (Byte Size 0x00) ..135

Figure 139. Protected Logical Write with Three Address Fields Response over
TCP (Byte Size Fuzzed) ...135

Figure 140. Protected Logical Write with Three Address Fields Response over
TCP (File No. Fuzzed) ...136

Figure 141. Protected Logical Write with Three Address Fields Response over
TCP (File Type Fuzzed)...136

 xviii

Figure 142. Protected Logical Write with Three Address Fields Response over
TCP (Element No. Fuzzed) ..137

Figure 143. Protected Logical Write with Three Address Fields Response over
TCP (Sub-Element No. Fuzzed) ..137

Figure 144. Unprotected Read Response over TCP (Address Fuzzed)138

Figure 145. Unprotected Read Response over TCP (Size Fuzzed).138

Figure 146. Diagnostic Status Response over TCP (Functionality Test)139

Figure 147. Read Diagnostic Counters Response over TCP (Address Fuzzed:
0x3455) ..139

Figure 148. Read Diagnostic Counters Response over TCP (Size Fuzzed: 25)140

Figure 149. Read Diagnostic Counters Response over TCP (Size Fuzzed: 75)140

Figure 150. Restart Response over TCP (Functionality Test)141

Figure 151. Download Completed Response over TCP (Functionality Test)141

Figure 152. MicroLogix Protected Logical Read with Three Address Fields
Request over TCP (File No. 0x03 and File Type 0x47)142

Figure 153. ControlLogix Protected Logical Read with Three Address Fields
Request over TCP (File No. 0x03 and File Type 0x47)143

Figure 154. ControlLogix Protected Logical Read with Three Address Fields
Response over TCP (File No. 0x03 and File Type 0x47)143

xix

LIST OF TABLES

Table 1. EtherNet/IP Packet Structure. Source: [16]. ..8

Table 2. Message Format for Execute PCCC. Source: [26].9

Table 3. ENIP Test Commands. Source: [16]. ...14

Table 4. CIP Test Commands. Source: [15]. ...15

Table 5. PCCC Test Commands. Source: [17]. ...16

Table 6. ENIP Test Plan ...20

Table 7. CIP Test Plan ...33

Table 8. PCCC Testing Plan ..40

Table 9. ENIP Fuzz Testing Results ..61

Table 10. CIP Fuzz Testing Results ...69

Table 11. Identity Object Instance Attributes. Adapted from [15].71

Table 12. Identity Object Get_Attributes_All Response for Instance 0x00.
Source: [15]. ...72

Table 13. PCCC Fuzz Testing Results ...76

Table 14. Example MicroLogix 1100 Responses to PCCC Protected Logical
Read with Three Address Fields Command ..81

Table 15. Summary of MicroLogix 1100Unexpected Responses82

Table 16. Summary of ControlLogix 1756-L71 Response Deviations84

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

LIST OF ACRONYMS AND ABBREVIATIONS

AB/RA Allen Bradley/Rockwell Automation

CIP Common Industrial Protocol

DNP3 Distributed Network Protocol 

DoS denial of service 

EtherNet/IP EtherNet Industrial Protocol 

ENIP EtherNet/IP

EXT STS Extended Status

HM&E hull mechanical and electrical 

ICS Industrial Control System 

IOI Internal Object Identifier

NOP No Operation

ODVA Open DeviceNet Vendor Association

PCCC Programmable Controller Communication Commands

PROM programmable read-only memory

PLC programmable logic controller 

RAM random access memory

TCP Transmission Control Protocol

SCADA supervisory control and data acquisition

STS Status 

UDP User Datagram Protocol 

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

xxiii

ACKNOWLEDGMENTS

I would like to thank my thesis advisors, Thuy Nguyen and Dr. Cynthia Irvine, for

their guidance, expertise, and encouragement. You challenged me and drove me to make

the most of this opportunity. I would also like to thank Francisco Tacliad, whose thesis

laid the foundation for our research, and David Shifflet, for his assistance in creating our

testing environment. To my wife, Ashley, thank you for your unwavering support. Your

love, patience, and encouragement were invaluable during this process. To my daughter,

Grace, and newborn son, James, you bring me laughter and joy every day and have been

a source of great motivation. Thank you also to my parents and sister who continually

support me, not just during this period, but throughout my life. Lastly, thank you to the

Naval Postgraduate School professors, from whom I have learned so much over these

past two years.

 xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

While industrial control systems (ICSs) allow for the management of large,

complex, and often distributed machinery systems, they can also be manipulated for

malicious purposes. In 2000, a disgruntled former employee in Queensland, Australia,

perpetrated one of the first known attacks on a Supervisory Control and Data Acquisition

(SCADA) system. Through manipulation of the pumping stations, the offender released

over one million liters of sewage into local waterways [1]. Following the events in

Australia, attackers have successfully exploited the vulnerabilities inherent in networked

control systems. The Stuxnet worm, discovered in 2010, targeted specific Siemens

programmable logic controllers (PLCs) used at the Natanz nuclear enrichment facility.

The sophisticated malware utilized four zero-day vulnerabilities to send fatigue-inducing

commands to PLCs controlling nuclear enrichment centrifuges [2].

SCADA-based power grids are also vulnerable to cyber attacks. In December

2015, the Prykarpattyaoblenergo control center in Ukraine was the victim of an attack

that left more than 230,000 West Ukraine residents without power for six hours. The

alleged Russian attackers gained access to the utility’s network through a phishing

scheme. Using a program called BlackEnergy3, the hackers established a backdoor on the

network, from which they gained access to the SCADA networks. The attackers were

able to take thirty substations offline, disable backup power, and rewrite substation

firmware before using KillDisk malware to delete files from operator systems and render

them unusable [3].

Attacks against networked control systems can take varied forms. In April 2017,

hackers simultaneously set off all 156 tornado warning sirens in Dallas, Texas. In normal

operation, police dispatchers or weather officials send signals to a transmitter that

activates selected sirens. To set off the sirens, the attacker used the input frequency to

repeatedly activate all of the sirens over a period of several hours [4]. Although this

 2

attack relied on hijacking radio frequencies, similar disruption could potentially be

caused by malicious software.

Efforts to address PLC vulnerabilities started several years ago. In 2007, the Idaho

National Laboratory conducted the Aurora test in which researchers caused physical

damage to a diesel generator by rapidly connecting and disconnecting the generator to the

power grid, causing an out of phase condition [5]. In 2013, Sandia National Laboratories

developed a system called Weaselboard, which provides zero-day exploit protection for

PLCs by monitoring PLC backplane communications between devices and scanning for

configuration changes [6]. In the private sector, Digital Bond created Project Basecamp

to perform security testing on popular SCADA system components. The Project

Basecamp researchers demonstrated vulnerabilities affecting multiple different PLC

market leaders [7].

One effective method to test for vulnerabilities in protocols and systems is fuzzing

or fuzz testing. Fuzzing is a technique that aims to uncover coding errors or security flaws

by feeding a target program random input parameters [8]. Previous work has

demonstrated that fuzz testing can be used to uncover vulnerabilities in industrial network

protocol [9].

B. RELEVANCE TO THE NAVY

The Hull Mechanical and Electrical (HM&E) systems on U.S. Navy ships employ

industrial automation components such as PLCs to run critical onboard services like

propulsion, auxiliary, and mission-specific equipment [10]. As the Navy reduces

shipboard crew strength through automation, as demonstrated in the DDG 1000, and

launches completely unmanned vessels like the Anti-Submarine Warfare Continuous

Trail Unmanned Vessel, the reliance on shipboard ICS increases. While a networked

control system architecture (e.g., SCADA) provides centralized data availability and

control of physical equipment in different locations, the communication channels

between the PLCs and control devices are vulnerable to cyber attacks [2], [11].

Recognizing the inherent vulnerabilities in control systems, the Navy is

developing the Resilient Hull, Mechanical, and Electrical Security system to prevent

 3

attackers from disabling or accessing shipboard PLCs. The system varies the

implementation of PLC firmware so that if an exploit is able to disable a primary

controller, the same exploit will not affect the redundant PLC’s ability to assume the

operation [12].

Allen Bradley / Rockwell Automation (AB/RA) is a leader in the ICS field and

their products are currently used onboard Navy ships. Grandgenett et al. showed that

AB/RA PLCs are susceptible to denial-of-service (DoS) [13], man-in-the-middle attacks,

and replay attacks to force unauthorized privileged commands [14]. AB/RA PLCs

support two widely-used industrial control protocols: Common Industrial Protocol (CIP)

[15], EtherNet/IP (ENIP) [16], in addition to Programmable Controller Communication

Commands (PCCC), a legacy AB/RA proprietary protocol [17]. CIP is an industry-vetted

network protocol used to manage industrial devices [15]. CIP rides on top of ENIP,

which is transported over TCP/IP. ICS network protocols, like CIP, ENIP, and PCCC

allow for efficient control of distributed systems, but also create potential vectors of

attack to disable or destroy U.S. Navy ships.

C. OBJECTIVES

This thesis aims to identify vulnerabilities in select AB/RA PLCs through their

implementation of CIP and ENIP to directly improve mission readiness of U.S. Navy

ships and harden their cyber defenses. Tacliad discusses the discovery of a CIP-

encapsulated PCCC vulnerability in an AB/RA MicroLogix PLC through fuzz testing

different ENIP, CIP, and PCCC commands [9]. This thesis seeks to expand and improve

the ENIP Fuzz program to include additional ENIP, CIP, and PCCC commands. Once

adapted to fuzz a larger catalogue of commands, we aim to implement ENIP Fuzz on the

MicroLogix PLC and a more advanced AB/RA PLC (ControlLogix) to determine if

vulnerabilities to AB/RA PLC communications stack are cross-generational.

D. THESIS ORGANIZATION

Chapter II provides background on CIP, EtherNet/IP, and PCCC protocols. It

includes a summary of previous ICS fuzz testing efforts, Scapy [18], and existing Scapy-

based fuzzing tools. Chapter II also presents an introduction to two AB/RA PLCs used in

 4

this thesis. Chapter III describes the experimentation design objectives, methodology, and

testing environment. Chapter IV is an account of test plan and implementation. Chapter V

is our analysis of results. Chapter VI discusses conclusions and future work.

5

II. BACKGROUND

A. COMMON INDUSTRIAL PROTOCOL (CIP)

CIP, previously known as Control and Information Protocol [19], is a “peer-to-

peer object oriented protocol that provides connections between industrial devices

(sensors, actuators) and higher-level devices (controllers)” [15]. CIP was developed by

Rockwell Automation but is now run by Open DeviceNet Vendors Association (ODVA),

a global association of automation industry leaders. CIP is supported by four different

ODVA network communication protocols, EtherNet/IP, DeviceNet, CompoNet and

ControlNet [20]. Using the Open System Interconnection model, CIP utilizes the

Presentation and Application layers. Session layer is not utilized in CIP. In the

EtherNet/IP structure, CIP rides on top of the Transport layer and utilizes an Ethernet

network stack [21]. Figure 1 illustrates the CIP network work stack architecture.

 6

Figure 1. CIP Network Architecture Stack. Source: [15].

CIP nodes are comprised of objects, which can contain data. Each object is an

instance of a particular class. CIP objects contain attributes for both object and class,

which enable specific services. Objects with the same attributes belong to the same class

[15]. CIP is designed so that the same objects on different devices behave in the same

manner. This allows for a producer-consumer relationship, where data is sent from the

producer device to potentially multiple consumer devices with a single transmission [22].

Figure 2 shows the CIP Object Model.

 7

Figure 2. CIP Object Model. Source: [23].

CIP relies on two methods of routing to transmit data. For connected messages,

CIP uses a connection ID to transfer packets. For unconnected messages, an Internal

Object Identifier (IOI), also known as an EPATH, is used to explicitly provide the path

packets will travel to their destination. The device that opens the connection dictates the

routing directives [24].

B. ETHERNET/INDUSTRIAL PROTOCOL (ETHERNET/IP)

EtherNet/IP utilizes Ethernet (IEEE 802.3) and the TCP/IP network protocol stack

to transport CIP as an application layer protocol. For this reason, it is often referred to as

“CIP over Ethernet” [21]. EtherNet/IP uses IP Multicast to enable a producer-consumer

exchange of information between a sending device and receiving devices [15]. By

utilizing a common Ethernet protocol stack, EtherNet/IP allows CIP to be used across

different CIP networks and enables Internet compatibility and remote control capability

[21]. Figure 3 shows how an EtherNet/IP message is embedded in the TCP data payload.

 8

Figure 3. EtherNet/IP Packet Encapsulation. Source: [25].

The encapsulation message includes a standard 24-byte fixed length header,

followed by an optional data section. Encapsulation messages may be in TCP or UDP

format and are sent to port 44818 of the receiving device. Table 1 shows the content of

the EtherNet/IP encapsulation header and encapsulated data [16].

Table 1. EtherNet/IP Packet Structure. Source: [16].

C. PROGRAMMABLE CONTROLLER COMMUNICATION COMMANDS

(PCCC)

PCCC is a legacy AB/RA protocol designed for the PLC5 and SLC500 processors

[21]. PCCC objects do not support CIP connections on their own. However, they can be

encapsulated in CIP commands in order to communicate with legacy PLCs. This

encapsulation is accomplished through the use of an IOI. Once a connection to a Message

Router object is established, an IOI is used to specify the PCCC object. When the CIP

packet is received, “Execute PCCC” service is processed by the PCCC object at the

 9

receiving device [24]. Table 2 shows the message structure for a PCCC command,

without CIP encapsulation [26].

Table 2. Message Format for Execute PCCC. Source: [26].

D. FUZZ TESTING

The field of fuzz testing originated with Wisconsin University professor Barton

Miller in 1989. Miller’s team built a program, named fuzz, which generated random

strings of characters and fed them into program inputs in an effort to create system

failures [8]. Fuzz testing has grown into a widely-used method of vulnerability testing.

There are two main subcategories of fuzzers: generation-based and mutation.

Generation-based fuzzers craft fuzzing inputs based on knowledge of input structures and

protocols. These programs generate strings of random characters and varying lengths.

Sophisticated generation-based fuzzers utilize block-based methods, where each input

field is treated as a targetable fuzzing block [27]. These fuzzers require detailed

specifications of input fields and protocols in order to customize block-sized inputs [28].

Mutation fuzzers utilize known good inputs and network traffic to build fuzzing

structures. By taking the known good input and switching out acceptable values with

random values, mutation fuzzers increase the likelihood their malformed inputs will not

be rejected outright, which increases their effectiveness [27].

 10

E. ICS FUZZERS

Numerous fuzz testing suites targeting well known ICS protocols are available.

beSTORM offers a commercially available EtherNet/IP fuzzing tool [29]. Mu Test Suite,

also a commercial product, includes resources to fuzz Distributed Network Protocol

(DNP3), Modbus, and the IEC61850 protocol [27]. In the open source arena, the Sulley

fuzzer includes modules for popular ICS protocols such as DNP3, Inter-Control Center

Communications Protocol, and Modbus [30]. Developed at Dartmouth, LZFuzz fuzzes

SCADA communications with unknown protocol structures. LZFuzz inserts itself into

live traffic and captures packets. Packets inbound to the target are tokenized and sent

though a mutation fuzzer to generate fuzzing inputs to the target. The program then

monitors return traffic to the traffic source for indications of success [27].

This thesis research utilizes Tacliad’s open source fuzzing tool, called ENIP Fuzz.

ENIP Fuzz is an ICS fuzzing program that uses the Python-based packet manipulation

tool, Scapy [18] to craft customized fuzzing inputs. ENIP Fuzz targets fields within ENIP

and CIP request packets [9].

F. SCAPY

Scapy is a Python-based packet manipulation tool that can enable network probes

and attacks. Scapy is flexible enough to allow custom packet crafting. It does not place

limits on type of field input or stack configuration, which makes it a powerful tool for

protocol fuzz testing. Users can craft Scapy packets in stackable layers. Scapy is capable

of both sending and listening for response packets. Many networking tools apply

interpretive filters on packet responses. Scapy does not employ this method in order to

avoid inserting potential bias into response results. Interpretation of Scapy response

packets lies with the user [18].

G. PREVIOUS SCAPY-BASED FUZZING

Scapy’s versatile configuration has made it a popular choice for fuzz testing

frameworks. Scapy allows a user to specify designated fields for fuzzing, while providing

standard protocol inputs to other fields [31]. Scapy libraries have been used to fuzz Wi-Fi

drivers [32], IPV6 [33] and IPV6 over low power wireless personal area networks [34],

11

and Internet Key Exchange messages [35]. In the ICS field, different fuzzing tools have

utilized Scapy. Modbus/TCP Fuzzer targets the Modbus communication protocol [36].

Modbus is an application layer protocol that utilizes a master-slave architecture [37].

Scapy is used to target the Modbus/TCP master-initiated command packets for fuzzing.

Some electrical utilities use the IEEE C37.118 protocol to communicate between wide

area monitoring systems that operate phasor measurement units and phasor data

concentrators. Sprabery et al. created a IEEE C37.118 mutation-based fuzzer using Scapy

to test particular protocol rules for vulnerabilities [38].

Tacliad’s ENIP Fuzz targets the EtherNet/IP and CIP protocols using the Scapy

library to craft malformed packets. ENIP Fuzz tests specified objects in the designated

protocols and monitors for unexpected responses or lack of response to liveliness checks.

While Tacliad tested a very limited sample of EtherNet/IP, CIP, and CIP-encapsulated

PCCC commands, his experimentation demonstrated a proof of concept, which can be

greatly expanded to determine the robustness of the examined protocols [9].

H. ALLEN-BRADLEY / ROCKWELL AUTOMATION PLCS
(MICROLOGIX 1100 AND CONGROLLOGIX 5570)

The MicroLogix 1100 is a lower-end PLC that supports 12 inputs (10 digital and

2 analog) and 6 outputs, and up to 144 digital I/O points. It is utilized to perform varied

industrial applications such as machinery control and production processes. The

controller has an RS232/485 serial port and an Ethernet port. The Ethernet port enables

peer-to-peer communication across controllers [39]. Figure 4 shows a MicroLogix 1100.

Figure 4. MicroLogix 1100 PLC. Source: [39].

 12

The AB/RA ControlLogix PLC is a more advanced modular PLC than the

MicroLogix 1100. A ControlLogix PLC consists of a controller (CPU) module (e.g.,

1756-L71 controller) and multiple I/O modules in one chassis. The local I/O modules can

include one or more EtherNet/IP modules (e.g., 1756-EN2T and 1756-EWEB modules),

and one or more analog and digital I/O modules (e.g., 1756-OF8 and 1756-IB16

modules). A ControlLogix 5570 PLC can handle up to 128,000 digital or 4,000 analog

I/O points and is used for shipboard applications, power generation, and transportation

functions. The PLC can communicate across multiple protocols including EtherNet/IP

(including CIP and encapsulated PCCC), ControlNet, DeviceNet, Data Highway Plus,

Remote I/O, SynchLink, and third-party networks. The 5570 model does not offer an

embedded Ethernet Port, but has a USB interface for local programming. For ease of

configuration and maintenance, most EtherNet/IP modules support web browsing, email,

and file transfer. The ControlLogix family also offers the ability to configure controller

redundancy into the system. [40]. Figure 5 shows a ControlLogix PLC with multiple I/O

modules.

Figure 5. ControlLogix PLC. Source: [40].

 13

III. DESIGN

A. OBJECTIVES

This thesis explores two objectives. The first objective is to determine if ENIP

Fuzz can be used to determine new vulnerabilities in the AB/RA implementation of the

ENIP, CIP and PCCC protocols used by the MicroLogix and ControlLogix PLCs. Our

hypothesis is that undiscovered software flaws could potentially exist in the

implementation of AB/RA’s implementation of the protocols. The second objective is to

determine if testing network vulnerabilities known to exist in older PLCs help inform on

the robustness of the ICS network stack in a more modern PLC design. Our hypothesis is

that legacy protocol handlers are left in the code base but not fully tested in newer PLC

models.

B. METHODOLOGY

Testing follows a black box-style fuzzing methodology, i.e., having no access to

AB/RA source code. The test plan and testing methodology relies heavily on the protocol

specifications for ENIP, CIP, and PCCC protocols. To determine specific commands

from each protocol to fuzz, we analyze protocol commands to identify targets that focus

on non-disruptive functionality. We avoid commands that we assessed to have high risk

of reconfiguring memory, altering functionality, or causing permanent damage to the

SUT. We aim to select target commands that provide a representative sample of different

types of services provided by each protocol.

Previous testing using ENIP Fuzz exercised three MicroLogix-supported

commands sent over a TCP connection: ENIP Register Session, CIP No_Operation

(NOP), and PCCC Execute Services [9]. Our testing framework focuses on a wider cross-

section of ENIP commands and CIP services, transported over both TCP and UDP, in an

effort to discover vulnerabilities that may be present in different service types.

The ENIP test commands can be grouped into five categories as shown in

Table 3. Our ENIP test suite consists of all three “list” commands, the UnRegisterSession

 14

command, the SendRRData and SendUnitData commands, the reserved for legacy

commands, and the reserved for future expansion commands.

Table 3. ENIP Test Commands. Source: [16].

ENIP Test Commands Description
Lists

List Identity Requests information on the target’s identity.

List Interfaces
Requests non-CIP communication interfaces associated
with the target.

List Services Requests information on the supported services.
Session Commands

Unregister Session
Instructs the receiver to initiate a close of the underlying
TCP/IP connection.

Send Commands

SendRRData Transfers an encapsulated request/reply packet.

SendUnitData Sends encapsulated connected messages.
Legacy Commands
Reserved Command
Codes Reserved for legacy use.
Future Expansion Commands
Reserved Command
Codes Reserved for future expansion.

For the CIP Explicit Messaging testing, we select services with multiple fuzzable

fields based on the assumption that such commands would be more complex and have a

higher potential for vulnerabilities in handling errors. Table 4 summarizes the CIP

common services in the CIP test suite. While each of the Get_Attributes_xxx services

have a corresponding Set_Attributes_xxx command, we specifically skip the latter in an

effort to not corrupt any PLC settings.

 15

Table 4. CIP Test Commands. Source: [15].

CIP Test Commands Description

Get Attribute All
Returns the contents of the instance or class
attributes defined in the object definition.

Get Attribute List

Returns the contents of the selected
gettable attributes of the specified object
class or instance.

Get Attribute Single
Returns the contents of the specified
attribute.

Find Next Object Instance

Returns a list of Instance IDs [15]
associated with existing Object Instances
[15]. Existing Objects are those that are
currently accessible from the CIP subnet.

Our strategy for testing PCCC commands follows two common testing

techniques: specification compliance testing and unexpected exception handling testing.

First, we identify the PCCC commands that are described in the DF1 Protocol and

Command Set specification [17] as compatible with the MicroLogix 1000 family’s

implementation of the protocol. PCCC information for the SUTs is not publicly available.

Table 5 shows the commands in the PCCC test suite that have a low risk of disrupting the

SUT functionality. We choose the PCCC Echo command because it allows the inclusion

of a large amount of data in a packet, which can be used to test the maximum allowable

packet size. We select the Protected Typed File Read, Protected Typed File Write, and

Protected Logical Write with Three Address Fields commands for their multiple fuzzable

fields and potential for stack corruption. The Unprotected Read command is selected for

its potential to cause errors by attempting to read unintended address spaces. The Read

Diagnostic Counters command is included in the test suite due to its ability to read data

from a fuzzable address location. The Diagnostic Status command is also tested because

the response to the Diagnostic Status request command provides the starting memory

address for the PLC’s diagnostic counters, which can be used with the Read Diagnostic

Counters command.

In addition to the MicroLogix-supported PCCC commands, the PCCC test suite

also includes commands that may contain vulnerabilities or cause an unexpected result

 16

because, according to the PCCC specification [17], they are not supported by the

MicroLogix 1000 PLC (see Table 5). While the selected commands, Download

Completed and Restart, do not have fuzzable fields, their inclusion in the test suite allows

testing of unexpected error handling.

Table 5. PCCC Test Commands. Source: [17].

PCCC Test Commands Description

Echo
The receiving module should reply to this command by
transmitting the same data back to the originating node.

Protected Typed File
Read Reads data from an open file in the PLC.
Protected Typed File
Write Writes data to an open file in the PLC.
Protected Logical Write
with Three Address
Fields Writes data to a logical address in PLC processor.

Unprotected Read Read data from a common interface file.

Diagnostic Status
Reads a block of status information from an interface
module.

Read Diagnostic
Counters

Reads up to 244 bytes of data from the PROM or RAM of
an interface module.

Restart

Revokes upload and download privileges for the source
computer node and initializes PLC restart. (Command
intended for PLC-3 only after completion of upload or
download operation)

Download Completed
Places processor back in previous mode upon completion
of system download.

Protected Typed Logical
Read with Three Address
Fields Reads data from a logical address in PLC processor.

17

Previous ENIP Fuzz testing uncovered an improper input validation vulnerability

in different versions of MicroLogix 1100 controllers, which is described in the ICS-

CERT security advisory ICSA-17-138-03 [41]. When the Protected Typed Logical Read

with Three Address Fields command was issued with certain parameters, the MicroLogix

1100 halted, causing a denial of service condition. This command is tested on a

ControlLogix 5570 to verify our second hypothesis that legacy protocol handlers may be

left in the code base but not fully tested in newer PLC models.

C. TEST ENVIRONMENT

The fuzzing tool used in this thesis is ENIP Fuzz. It is a Scapy-based fuzzer that

enables construction of specially crafted packets, which allows the user to test a wide

variety of inputs for each value in protocol packet. ENIP Fuzz utilizes both CIP and ENIP

dissectors, which define classes for each protocol request and response message format.

The MicroLogix test environment consists of a MicroLogix system under test

(SUT), a Windows PC with a Windows 7 virtual machine (VM), a Mac laptop with a

Kali Linux 2.0 VM, and a Mac laptop running the Wireshark protocol analyzer. All

components are connected to a central hub. The Windows 7 VM runs RSLinx and

RSLogix—AB/RA development software with which a user can send commands to and

monitor responses from the connected PLC. In the Kali VM, ENIP Fuzz is used to build

and send custom packets to the PCL in order to test the ENIP, CIP, and PCCC protocols

for vulnerabilities. During testing, potential faults are monitored on the RSLogix console,

from fault responses in Wireshark, and physical fault indications on the SUT. The testing

environment setup is displayed in Figure 6.

 18

Figure 6. MicroLogix Testing Environment

The ControlLogix test environment is similar to the MicroLogix environment

except that the Rockwell Studio 5000 Logic Designer development software running on a

Window 7 PC is used instead of the RSLogix software (see Figure 7).

Figure 7. ControlLogix Testing Environment

19

IV. IMPLEMENTATION AND TEST PLAN

A. FUZZER IMPLEMENTATION

The fuzzing platform, ENIP Fuzz [9], is modified to conduct the desired breadth

of target command testing across the ENIP, CIP, and PCCC protocols. Using the

modified ENIP Fuzz program, properly formed packets are crafted and sent to the SUT to

establish baseline request and response behavior. Specially designed malformed packets

are then sent to the SUT and analyzed in relation to the hypothesized SUT responses. The

testing goal is to trigger a denial of service condition in the SUT. This is defined as a

fault in the SUT that requires either a power cycle to clear or reset through the

RSLogix/Studio 5000 interfaces, or a disruption in the SUT’s ability to send or receive

command traffic.

1. FUZZER MODIFICATIONS FOR MICROLOGIX

The ENIP Fuzz architecture consists of command and service-specific fuzzing

modules and protocol dissectors. Eight ENIP fuzzing modules are constructed to test the

following ENIP commands (discussed in Chapter III): ListServices, ListIdentity,

ListInterfaces, UnRegisterSession, SendRRData, SendUnitData, Reserved for Legacy

Use, and Reserved for Future Use. Two CIP fuzzing modules are created to test the

Get_Attributes_All and Find_Next_Object_Instance CIP services. Nine PCCC fuzzing

modules are added to test the following PCCC commands via the PCCC Execute Service

Request service: Echo, Protected Typed File Read, Protected Typed File Write, Protected

Typed Logical Write with Three Address Fields, Unprotected Read, Download

Completed, Restart, Diagnostic Status, and Read Diagnostic Counters.

The ENIP Fuzz CIP dissector is modified to allow the

Find_Next_Object_Instance command to specify the number of maximum values

returned. Both ENIP and CIP dissectors are modified to create the expanded packet views

presented later in this document.

 20

2. FUZZER MODIFICATIONS FOR CONTROLLOGIX

In order to test a recently discovered PCCC vulnerability [9] affecting

MicroLogix on the ControlLogix PLC, ENIP Fuzz’s handling of the Protected Typed

Logical Read with Three Address Fields PCCC command requires modifications. The

objective of this test is to determine whether the PCCC vulnerability in the MicroLogix

implementation also exists in the ControlLogix software. Through analysis of

ControlLogix network traffic, it is observed that the ControlLogix implements the CIP

Forward_Open request differently. The Forward_Open request establishes a connection

with a target device [15] and precedes the target test command request. ControlLogix

PLCs require a 3-word request path [15], as opposed to the 2-word request path used on

the MicroLogix. The request path specifies the required route the command packet

travels to the remote target device [15]. ENIP Fuzz is modified to handle both types of

request path.

B. ENIP FUZZING TEST PLAN

Previous ENIP Fuzz testing is limited to the RegisterSession command [9]. The

current work expands the testing to test ENIP commands not tested by Tacliad [9] for

vulnerabilities. Command fields are tested in isolation in order to provide a methodical

evaluation of each command’s potential vulnerabilities. Table 6 summarizes the ENIP

test plan.

Table 6. ENIP Test Plan

Test
Number ENIP Command

Fuzzed
Field Protocol Fuzzing Parameters

T1 List Services/Identity/Interfaces
Session
Handle TCP

0x00000000 to
0xFFFFFFFF

T2 List Services/Identity/Interfaces
Session
Handle UDP

0x00000000 to
0xFFFFFFFF

T3 List Services/Identity/Interfaces Status TCP
0x00000000 to
0xFFFFFFFF

T4 List Services/Identity/Interfaces Status UDP
0x00000000 to
0xFFFFFFFF

 21

Test
Number ENIP Command

Fuzzed
Field Protocol Fuzzing Parameters

T5 List Services/Identity/Interfaces
Sender
Context TCP

0x0000000000000000
to
0xFFFFFFFFFFFFFFFF

T6 List Services/Identity/Interfaces
Sender
Context UDP

0x0000000000000000
to
0xFFFFFFFFFFFFFFFF

T7 List Services/Identity/Interfaces Options TCP
0x00000000 and
0xFFFFFFFF

T8 List Services/Identity/Interfaces Options UDP
0x00000000 and
0xFFFFFFFF

T9 UnRegisterSession
Session
Handle TCP

0x00000000 to
0xFFFFFFFF

T10 UnRegisterSession Status TCP
0x00000000 to
0xFFFFFFFF

T11 UnRegisterSession
Sender
Context TCP

0x0000000000000000
to
0xFFFFFFFFFFFFFFFF

T12 UnRegisterSession Options TCP
0x00000000 and
0xFFFFFFFF

T13
UnRegisterSession UDP
Functionality N/A UDP

Properly crafted ENIP
encapsulated packet sent
over UDP

T14 SendRRData
Session
Handle TCP

0x00000000 to
0xFFFFFFFF

T15 SendRRData Status TCP
0x00000000 to
0xFFFFFFFF

T16 SendRRData
Sender
Context TCP

0x0000000000000000
to
0xFFFFFFFFFFFFFFFF

T17 SendRRData Options TCP
0x00000000 and
0xFFFFFFFF

T18 SendRRData
Interface
Handle TCP

0x00000000 and
0xFFFFFFFF

T19 SendRRData TimeOut TCP 0-65535

T20 SendUnitData
Session
Handle TCP

0x00000000 to
0xFFFFFFFF

T21 SendUnitData Status TCP
0x00000000 to
0xFFFFFFFF

T22 SendUnitData
Sender
Context TCP

0x0000000000000000
to
0xFFFFFFFFFFFFFFFF

T23 SendUnitData Options TCP
0x00000000 and
0xFFFFFFFF

T24 SendUnitData
Interface
Handle TCP

0x00000000 and
0xFFFFFFFF

 22

Test
Number ENIP Command

Fuzzed
Field Protocol Fuzzing Parameters

T25 SendUnitData TimeOut TCP 0-65535

T26 Reserved for Legacy
Command
Field TCP

0x0001,0x0002,
0x0005, 0x0067-
0x006E, and 0x0071-
0x00C7

T27 Reserved for Legacy
Command
Field UDP

0x0001,0x0002,
0x0005, 0x0067-
0x006E, and 0x0071-
0x00C7

T28 Reserved for Future Use
Command
Field TCP

0x0006-0x0062 and
0x00C8-0xFFFF

T29 Reserved for Future Use
Command
Field UDP

0x0006-0x0062 and
0x00C8-0xFFFF

1. ENIP ListServices Command

The ENIP ListServices Request command returns the service(s) the target

supports. To test the command, the Session Handle, Status, Sender Context, and Options

fields are individually fuzzed using both TCP and UDP. The Session Handle field is

tested with a combination of inputs ranging from 0x00000000 to 0xFFFFFFFF. The

Status field is fuzzed in a similar manner. The Sender Context field is tested with data

ranging from 0x0000000000000000 to 0xFFFFFFFFFFFFFFFF. The Options field is

tested between 0x00000000 and 0xFFFFFFFF. Figures 8–11 illustrate the packet

structure for the ListServices command sent over TCP and UDP, respectively.

Fields encapsulated at the ENIP layer are highlighted.

Figure 8. An Example ENIP ListServices Request over TCP Packet

 23

Figure 9. Hexadecimal View of Example ENIP ListServices Request over TCP
Packet

Fields encapsulated at the ENIP layer are highlighted.

Figure 10. An Example ENIP ListServices Request over UDP Packet

Figure 11. Hexadecimal View of Example ENIP ListServices Request over
UDP Packet

2. ENIP UnRegisterSession Command

The ENIP UnRegisterSession command terminates an existing ENIP session and

closes the TCP connection associated with the particular ENIP session. An ENIP session

is established using the ENIP RegisterSession command that was previously tested [9].

After receiving the UnRegisterSession command, the receiver initiates the closing of the

TCP connection and does not reply with a response message. In the event this command

is sent via UDP, the receiver replies with an error code 0x01, indicating an invalid or

unsupported command [16]. The receiver always closes the TCP connection even if the

 24

UnRegisterSession command contains unexpected values, e.g., invalid session

handle [16].

To test the UnRegisterSession commands, the Session Handle, Status, Sender

Context, and Options fields are fuzzed. The Session Handle field is tested with a

combination of inputs ranging from 0x00000000 to 0xFFFFFFFF. The Status field is

fuzzed in a similar manner. The Sender Context field is tested from

0x0000000000000000 to 0xFFFFFFFFFFFFFFFF. The Options field is tested with

values between 0x00000000 and 0xFFFFFFFF. Aside from the Session Handle test, the

other fields are fuzzed using a valid Session Handle in the packet.

To determine if MicroLogix complies with the ENIP requirement that an

UnRegisterSession command sent over UDP will be rejected with an error code of 0x01

“invalid or unsupported command” [16], a single properly-crafted UDP

UnRegisterSession command is included in the ENIP test suite. Figures 12 and 13 display

a sample TCP ENIP UnRegisterSession Request. Figures 14 and 15 show a UDP version

of the command for exception testing purposes.

Fields encapsulated at the ENIP layer are highlighted.

Figure 12. An Example ENIP UnRegisterSession Request over TCP Packet

25

Figure 13. Hexadecimal View of Example TCP ENIP UnRegisterSession
Request Packet

Fields encapsulated at the ENIP layer are highlighted.

Figure 14. An Example ENIP UnRegisterSession Request over UDP Packet.

Figure 15. Hexadecimal View of Example ENIP UnRegisterSession Request over
UDP Packet

3. ENIP SendRRData Command

SendRRData sends encapsulated messages from an originator to a target. When

encapsulating CIP, the SendRRData command transports unconnected messages [16]. To

test the SendRRData command fields, the following fields are fuzzed using a TCP

connection: Session Handle, Status, Sender Context, Options, Interface Handle, and

Timeout fields. The Session Handle field is tested with a combination of inputs ranging

from 0x00000000 to 0xFFFFFFFF. The Status field is fuzzed in a similar manner. The

Sender Context field is tested with data ranging from 0x0000000000000000 to

0xFFFFFFFFFFFFFFFF. The Options field is tested between 0x00000000 and

 26

0xFFFFFFFF. The Interface Handle is tested between 0x00000000 and 0xFFFFFFFF and

the Timeout field is tested between 0 and 65535. For the Encapsulated Data field, a CIP

Forward Open command is used. Figures 16 and 17 illustrate a sample SendRRData

request containing an encapsulated CIP Forward Open Request [15].

 27

Fields encapsulated at the ENIP layer are highlighted.

Figure 16. An Example ENIP SendRRData Request over TCP with an
Encapsulated CIP Forward Open Request

 28

Figure 17. Hexadecimal View of Example ENIP SendRRData Request over
TCP Packet

4. ENIP SendUnitData Command

The SendUnitData command [16] sends encapsulated connected messages that

rely on their own end-to-end transport. Both originators and targets can initiate the

SendUnitData command over a TCP connection. SendUnitData and SendRRData use the

same packet structure. The Session Handle, Status, Sender Context, Options, Interface

Handle, and Timeout fields are tested in the same manner as for SendRRData. Figures 18

and 19 demonstrate a sample SendRRData packet structure.

29

Fields encapsulated at the ENIP layer are highlighted.

Figure 18. An Example ENIP SendUnitData Request over TCP with an
Encapsulated CIP Get_Attribute_All Request

Figure 19. Hexadecimal View of Example EtherNet/IP SendUnitData Request
over TCP Packet

 30

5. ENIP Reserved for Legacy Use Commands

In the CIP Networks Library: Volume 2 EtherNet/IP Adaptation of CIP

specification [16], several commands are labeled as “Reserved for legacy use” (herein

referred to as Legacy Use) with no explanation of their functionality or packet structure.

The command codes for the Legacy Use commands are 0x0001, 0x0002, 0x0005,

0x0067-0x006E, and 0x0071-0x00C7. These commands are tested to determine if

MicroLogix handles them as defined by the ENIP specification, i.e., commands that are

not supported by a target device shall not break the session or TCP connection. This

testing also aims to discover unknown functionality of the legacy commands. Testing is

conducted over both TCP and UDP connections. Figures 20 and 21 show the structure of

a sample ENIP Legacy Use command sent over TCP. Figures 22 and 23 show the

structure of a sample Legacy Use command sent over UDP.

Fields encapsulated at the ENIP layer are highlighted.

Figure 20. An Example ENIP Legacy Use Request over TCP

Figure 21. Hexadecimal View of Example ENIP Legacy Use Request over
TCP Packet

 31

Fields encapsulated at the ENIP layer are highlighted.

Figure 22. An Example ENIP Legacy Use Request over UDP.

Figure 23. Hexadecimal View of Example ENIP Legacy Use Request over
UDP Packet

6. ENIP Reserved for Future Use Commands

There are also designated ENIP commands that are labeled “Reserved for future

use” (herein referred to as Future Use) in the CIP Networks Library: Volume 2

EtherNet/IP Adaptation of CIP specification [16]. The ranges of the Future Use

commands are 0x0006-0x0062 and 0x00C8-0xFFFF. These commands are tested to

determine if MicroLogix handles them as defined by the ENIP specification, i.e.,

commands that are not supported by a target device shall not break the session or TCP

connection. Figures 24 and 25 show the structure of an ENIP Future Use command sent

over TCP. Figures 26 and 27 show the structure of an ENIP Future Use command sent

over UDP.

 32

Fields encapsulated at the ENIP layer are highlighted.

Figure 24. An Example ENIP Future Use Request over TCP

Figure 25. Hexadecimal View of Example ENIP Future Use Request over
TCP Packet

Fields encapsulated at the ENIP layer are highlighted.

Figure 26. An Example UDP ENIP Future Use Request

Figure 27. Hexadecimal View of Example UPD ENIP Future Use
Response Packet

33

C. CIP FUZZING TEST PLAN

Previous CIP fuzz testing is limited to the CIP NOP command [9]. This thesis

expands the testing scope to include four additional CIP Common Services shown in the

CIP Test Plan in Table 7. Command fields are tested in isolation. All tests use the ENIP

command SendUnitData, which can only be used with TCP.

Table 7. CIP Test Plan

Test
Number CIP Command Fuzzed Field Protocol Fuzzing Parameters

T30 Get_Attributes_All Class TCP
Class 0x00-0xFF,
Attribute 0x01

T31 Get_Attributes_All Instance TCP
Class 0x01, Attribute
0x00-0xFF

T32 Get_Attribute_List Class TCP

Class 0x00-0xFF,
Attribute_List 0x01,
Instance 0x01

T33 Get_Attribute_List Attribute_List TCP

Class 0x01,
Attribute_List 0x00-
0xFF, Instance 0x01

T34 Get_Attribute_List Instance TCP

Class 0x01,
Attribute_List 0x01,
Instance 0x00-0xFF

T35 Get_Attribute_List Attribute_count TCP

Max Attribute_count
Length (Increasing
lengths of
Attribute_count field)

T36 Get_Attribute_Single Class TCP

Class 0x00-0xFF,
Attribute 0x01,
Instance 0x00

T37 Get_Attribute_Single Instance TCP

Class 0x01, Attribute
0x01, Instance 0x00-
0xFF

T38 Get_Attribute_Single Attribute TCP

Class 0x01, Attribute
0x00-0xFF, Instance
0x01

T39 Find_Next_Object_Instance Class TCP

Class 0x00-0xFF,
Instance 0x00,
Maximum Returned
Values 0x00

T40 Find_Next_Object_Instance Instance TCP

Class 0x01, Instance
0x00-0xFF, Maximum
Returned Values 0x00

T41 Find_Next_Object_Instance

Maximum
Returned
Values TCP

Class 0x01, Instance
0x00, Maximum
Returned Values 0x00

 34

1. CIP Get_Attributes_All

The Get_Attributes_All command requests the contents of all instance or class

attributes that the specified object supports [15]. Both Class and Attribute fields are

individually fuzzed with values in the range of 0x00 to 0xFF. Figures 28 and 29 show the

structure of a sample Get_Attributes_All command over TCP.

Fields encapsulated at the CIP layer are highlighted.

Figure 28. An Example CIP Get_Attributes_All Request over TCP

Figure 29. Hexadecimal View of Example CIP Get_Attributes_All Request over
TCP Packet

35

2. CIP Get_Attribute_List

The Get_Attribute_List Command requests the selected attributes of an object

class or instance [15]. The Get_Attribute_List is an optional service [2]. The Class,

Attribute, and Instance fields are individually fuzzed with values in the range of 0x00-

0xFF. The Attribute_count field is also tested by sending Get_Attribute_List requests

with increasing values in the Attribute_count field up to 0xFFFF to determine the

maximum number of attributes allowable. Figures 30 and 31 show the structure of a

sample TCP Get_Attribute_List command.

Fields encapsulated at the CIP layer are highlighted.

Figure 30. An Example CIP Get_Attribute_List Request over TCP

 36

Figure 31. Hexadecimal View of Example CIP Get_Attribute_List Request over
TCP Packet

3. CIP Get_Attribute_Single

The Get_Attribute_Single command requests the contents of a specified attribute.

This service is to be implemented for the Identity Object if any Class Attributes are

implemented [15]. Class, Attribute, and Instance fields are fuzzed with values ranging

from 0x00 to 0xFF. Figures 32 and 33 show the structure of a sample TCP

Get_Attribute_Single command.

37

Fields encapsulated at the CIP layer are highlighted.

Figure 32. An Example CIP Get_Attribute_Single Request over TCP

Figure 33. Hexadecimal View of Example CIP Get_Attribute_Single Request
over TCP Packet

 38

4. CIP Find_Next_Object_Instance

The Find_Next_Object_Instance command requests a list of Instance IDs

associated with existing Object Instances that are accessible from the CIP subnet at the

time the request is made [15]. The request command specifies the number of requested

Instances, but the number of returned Instances can be less. If the Instance ID in the

request is zero, the Instance ID that is numerically lowest in the Class is returned [15]. If

the Instance ID in the request is less than the highest Instance ID in the Class, successful

responses return the next Instance ID that is numerically higher than the Instance ID

specified in the request [2]. If the Instance ID in the request is greater than or equal to the

highest Instance ID in the Class, the value 0 is returned [15]. This service is only

available at the Class level [15]. Testing is conducted on the Class, Instance, and

Maximum Returned Values fields of this command with inputs ranging from 0x00 to

0xFF. Figures 34 and 35 show the structure of a sample CIP Find_Next_Object_Instance

command over TCP.

 39

Fields encapsulated at the CIP layer are highlighted.

Figure 34. An Example CIP Find_Next_Object_Instance Request over TCP

Figure 35. Hexadecimal View of Example CIP Find_Next_Object_Instance
Request over TCP Packet

40

D. PCCC FUZZING TEST PLAN

Previous MicroLogix PCCC fuzz testing is limited to the Execute PCCC

command Protected Typed Logical Read with Three Address Fields [17]. This thesis

expands the MicroLogix testing to fuzz PCCC commands not tested by Tacliad [9] for

vulnerabilities. Command fields are tested in isolation on the MicroLogix PLC in order

to provide a methodical evaluation of each command’s potential vulnerabilities.

Additionally, to determine if a recently discovered MicroLogix PCCC

vulnerability affects the ControlLogix, the Protected Logical Read with Three Address

Fields is tested on the ControlLogix with a MicroLogix fault-causing combination of

field inputs. Table 8 summarizes the PCCC test plan.

Table 8. PCCC Testing Plan

Test
Number PCCC Command

Fuzzed
Field Protocol Fuzzing Parameters

MicroLogix Tests
T42 Echo Data: 0 bytes TCP 0 Attached bytes

T43 Echo
Data: Max
Length TCP

Increasing number of attached
bytes

T44 Echo Data: 8 bytes TCP 8 Attached random bytes
T45 Echo Data: 9 bytes TCP 9 Attached random bytes

T46 Echo
Data: 10
bytes TCP 10 Attached random bytes

T47 Echo
Data: 40
bytes TCP 40 Attached random bytes

T48 Echo
Data: 243
bytes TCP 243 Attached random bytes

T49 Echo

Data:
Maximum
bytes returned
by module
with no errors TCP

Maximum random bytes returned
by module with no error

T50 Echo
Data: 248
bytes TCP 248 Attached random bytes

T51 Echo
Data: 256
bytes TCP 256 Attached random bytes

T52
Protected Typed
File Read Size TCP Size (0x00-0xFF)

 41

Test
Number PCCC Command

Fuzzed
Field Protocol Fuzzing Parameters

T53
Protected Typed
File Read Tag TCP Tag (0x0000-0xFFFF)

T54
Protected Typed
File Read Offset TCP Offset (0x0000-0xFFFF)

T55
Protected Typed
File Read File Type TCP File Type (0x00-0xFF)

T56
Protected Typed
File Write Size TCP Size (0x00-0xFF)

T57
Protected Typed
File Write Tag TCP Tag (0x0000-0xFFFF)

T58
Protected Typed
File Write Offset TCP Offset (0x0000-0xFFFF)

T59
Protected Typed
File Write File Type TCP File Type (0x00-0xFF)

T60
Protected Typed
File Write Data TCP Data (0x00-0xFF)

T61

Protected Typed
Logical Write with
Three Address
Fields Byte Size TCP Byte Size (0x00-0xFF)

T62

Protected Typed
Logical Write with
Three Address
Fields File No. TCP File No. (0x00-0xFF)

T63

Protected Typed
Logical Write with
Three Address
Fields File Type TCP File Type (0x00-0xFF)

T64

Protected Typed
Logical Write with
Three Address
Fields Element No. TCP

Element No. (0x00-0xFF and
0xFF0000-0xFFFFFF)

T65

Protected Typed
Logical Write with
Three Address
Fields

Sub-Element
No. TCP

Sub-Element No. (0x00-0xFF
and 0xFF0000-0xFFFFFF)

T66 Unprotected Read Address TCP Address (0x0000-0xFFFF)
T67 Unprotected Read Size TCP Size (0x00-0xFF)

T68
Diagnostic Status-
Functionality Test N/A TCP Properly formatted command

T69
Read Diagnostic
Counters Address TCP Address (0x0000-0xFFFF)

 42

Test
Number PCCC Command

Fuzzed
Field Protocol Fuzzing Parameters

T70
Read Diagnostic
Counters Size TCP Size (0x00-0xFF)

T71
Restart-
Functionality Test N/A TCP Properly formatted command

T72

Download
Completed-
Functionality Test N/A TCP Properly formatted command

ControlLogix Tests

T73

Protected Typed
Logical Read with
Three Address
Fields

File No., File
Type TCP

File No. (0x2-0x8), File Type
(0x47-0x48)

1. PCCC Echo Command

The Echo command enables a user to check the integrity of a communication link.

The receiving module replies to a request with the same data in the original transmission.

According Allen-Bradley’s DF1 Protocol and Command Set specification [17], this

command is compatible with the MicroLogix 1000, a member of the MicroLogix 1100

family of products, and should transmit a maximum of 243 bytes of data. In order to test

the maximum data allowable in an Echo command, the fuzzing device sends commands

with an increasing number of repeating bytes, starting from 0 to the maximum size that

the receiving module will reply with no errors, while monitoring SUT responses. Echo

commands are tested with random bytes using the following lengths: 0, 8, 9, 10, 243,

248, 256, and the observed maximum size returned with no errors. Figures 36 and 37

illustrate the structure of the PCCC Echo command.

43

Fields encapsulated at the PCCC layer are highlighted.

Figure 36. An Example PCCC Echo Request with Two Data Bytes over TCP

Figure 37. Hexadecimal View of Example PCCC Echo Request over TCP Packet.

 44

2. PCCC Protected Typed File Read

The Protected Typed File Read command reads data from an open file [17]. Four

fields are fuzz tested: Size, Tag, Offset, and File Type. The one-byte fields, Size and File

Type, are tested with random inputs from 0x00 to 0xFF. The two-byte fields, Tag and

Offset, are tested with random inputs from 0x0000 to 0xFFFF. The SUT is expected to

provide successful read responses. Figures 38 and 39 illustrate the structure of an

example packet.

Fields encapsulated at the PCCC layer are highlighted.

Figure 38. An Example PCCC Protected Typed File Read Request

45

Figure 39. Hexadecimal View of Example PCCC Protected Typed File
Read Packet

3. PCCC Protected Typed File Write

The Protected Typed File Write command writes data to an open file in the PLC

[17]. Testing is conducted on five fields: Size, Tag, Offset, File Type, and Data. The

one-byte fields, Size and File Type, are tested with random inputs from 0x00 to 0xFF.

The two-byte fields, Tag and Offset, are tested with random inputs from 0x0000 to

0xFFFF. The data field is tested with a two-byte size with random inputs from 0x0000 to

0xFFFF. The SUT is expected to provide successful write responses. Figures 40 and 41

illustrate the structure of an example packet.

 46

Fields encapsulated at the PCCC layer are highlighted.

Figure 40. An Example PCCC Protected Typed File Write Request

Figure 41. Hexadecimal View of Example PCCC Protected Typed File
Write Packet

 47

4. PCCC Protected Typed Logical Write with Three Address Fields

The Protected Logical Write with Three Address Fields command writes data to a

logical address in the PLC’s processor [17]. The specification [17] is unclear whether the

MicroLogix family of PLCs supports this command. Specifically, while the table that

summarizes the PCCC commands and compatible processors indicates MicroLogix

supports the command, the detailed description of this particular command omits

MicroLogix as a supporting platform. Based on previous testing of the Protected Logical

Read with Three Address Fields command [9], the MicroLogix is assumed to support the

command. Testing is conducted on the fields Byte Size, File Number, and File Type with

inputs ranging from 0x00 to 0xFF. Element Number, and Sub-element Number are one-

byte fields that can expand to three bytes when the first byte is set to 0xFF. In this case,

the second and third bytes identify the expanded sub-element [17]. For this reason, these

fields are tested in the one-byte configuration with inputs ranging from 0x00 to 0xFF and

in the three-byte configuration with inputs ranging from 0xFF0000 to 0xFFFFFF. The

Data field is not fuzzed in an effort to avoid overwriting memory space with unknown

functionality. Figures 42 and 43 show the structure of an example packet.

 48

Fields encapsulated at the PCCC layer are highlighted.

Figure 42. An Example PCCC Protected Typed Logical Write with Three
Address Fields Request

 49

Figure 43. Hexadecimal View of Example PCCC Protected Typed Logical Write
with Three Address Fields Request over TCP Packet

5. PCCC Unprotected Read

The Unprotected Read command requests data from a common interface file on

the PLC [17] Fuzz testing is conducted on two fields: Address and Size. The two-byte

Address field is fuzzed with random numbers between 0x0000 to 0xFFFF. The one-byte

Size field is fuzzed with inputs between 0x00 to 0xFF. The expected result of the

MicroLogix testing is a successful read response from the SUT. Figures 44 and 45 show

the structure of an example packet.

 50

Fields encapsulated at the PCCC layer are highlighted.

Figure 44. An Example PCCC Unprotected Read Request

Figure 45. Hexadecimal View of Example PCCC Unprotected Read Packet

51

6. PCCC Diagnostic Status

The Diagnostic Status command requests up to 244 bytes of status information

from an interface module. Per the specification [17], the MicroLogix 1000

implementation of the command provides information including firmware, processor

mode, and processor random access memory (RAM) size for the interface (24 bytes

[17]). Documentation specific to the MicroLogix 1100 implementation of the command

is not available. This command has no input parameter to fuzz, and thus, it is only

functionally tested to determine MicroLogix 1100-specific responses. Figures 46 and 47

show the structure of an example packet.

Fields encapsulated at the PCCC layer are highlighted.

Figure 46. An Example PCCC Diagnostic Status over TCP Request

 52

Figure 47. Hexadecimal View of Example PCCC Diagnostic Status Request over
TCP Packet

7. PCCC Read Diagnostic Counters

Per the specification [17], the MicroLogix 1000 implementation of the command

is used to read a module’s diagnostic timers and counters by requesting up to 244 bytes of

data from the programmable read-only memory (PROM) or RAM of an interface module

[17]. The specification does not provide any information specific to the MicroLogix 1100

implementation of the command. This command has two input parameters: Address and

Size. The Address field is fuzzed between 0x0000 and 0xFFFF with a Size field set to

0x01. The Size field is fuzzed between 0x00 and 0xFF with the Address field set to

0x0000. Figures 48 and 49 illustrate the structure of an example PCCC Read Diagnostic

Counters packet.

 53

Fields encapsulated at the PCCC layer are highlighted.

Figure 48. An Example PCCC Read Diagnostic Counters Request

 54

Figure 49. Hexadecimal View of Example PCCC Read Diagnostic Counters
Request Packet

8. PCCC Restart

The PLC Restart command is intended solely for the PLC-3 and is not compatible

with the MicroLogix family per the specification [17]. The command terminates any

upload or download, revokes upload/download privileges, and initializes a PLC-3 restart.

This command is tested with a properly formatted command in order to determine

MicroLogix 1100 functionality. Figures 50 and 51 illustrate the structure of an example

PCCC Restart request packet.

 55

Fields encapsulated at the PCCC layer are highlighted.

Figure 50. An Example PCCC Restart Request

 56

Figure 51. Hexadecimal View of Example PCCC Restart Request Packet

9. PCCC Download Completed

The Download Completed command returns a processor to its previous mode

upon completion of a complete system download [17]. This command is not intended for

the MicroLogix PLC family. Functionality testing is conducted to observe MicroLogix

1100 responses to an illegal command. Figures 52 and 53 illustrate the structure of an

example PCCC Download Completed packet.

57

Fields encapsulated at the PCCC layer are highlighted.

Figure 52. An Example PCCC Download Completed Request

Figure 53. Hexadecimal View of Example PCCC Download Completed Request
Packet

 58

10. PCCC Protected Logical Read with Three Address Fields Command
on ControlLogix

The Protected Logical Read with Three Address Fields is tested on the

ControlLogix PLC to address this thesis’ secondary research question: whether

vulnerabilities discovered on earlier model AB/RA PLCs affect more advanced and

modern AB/RA PLCs. Previous ENIP Fuzz testing led to the discovery of a vulnerability

in MicroLogix’s implementation of the command. When any combination of a File

Number 0x2 to 0x8 and File Type of 0x47 or 0x48 is present in the command, the

MicroLogix 1100 experiences a Major Error (0x8) and enters a fault state [9].

To test the ControlLogix, the fuzzer sends Protected Logical Read with Three

Address Field commands with a File Number between 0x2 and 0x8 and File Type of

0x47 or 0x48 to determine if the ControlLogix is susceptible to the same vulnerability

affecting MicroLogix PLCs. Figures 54 and 55 illustrate the structure of an example

PCCC Download Completed packet.

59

Fields encapsulated at the PCCC layer are highlighted.

Figure 54. An Example PCCC Protected Logical Read with Three Address
Fields Request

Figure 55. Hexadecimal View of Example PCCC Protected Logical Read with
Three Address Fields Request Packet

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

V. TEST ANALYSIS

This chapter presents the results of the fuzzed commands and a detailed analysis

for each test case examined. Results are summarized first and subsequently expanded

upon in the individual command result sections. Wireshark captures of SUT responses

are included in Appendixes A through C.

A. ENIP TEST RESULTS

The ENIP tests do not cause any faults or disruption of service to the MicroLogix

SUT. However, the testing does reveal several instances where the MicroLogix

implementation of ENIP deviates from the specification [16]. Table 9 summarizes both

expected and observed responses to the test cases.

Table 9. ENIP Fuzz Testing Results

Test
Number ENIP Command

Fuzzed
Field Protocol

Expected
Fuzzed
Response

Actual
Fuzzed
Response

T1
List
Services/Identity/Interfaces

Session
Handle TCP

Session
Handle
repeated in
response
(ignored by
target)

Session
Handle
repeated in
response
(ignored by
target)

T2
List
Services/Identity/Interfaces

Session
Handle UDP

Session
Handle
repeated in
response

Session
Handle
repeated in
response

T3
List
Services/Identity/Interfaces Status TCP TCP ACK TCP ACK

T4
List
Services/Identity/Interfaces Status UDP No response No response

T5
List
Services/Identity/Interfaces

Sender
Context TCP

Sender
Context
repeated in
response

Sender
Context
repeated in
response

T6
List
Services/Identity/Interfaces

Sender
Context UDP

Sender
Context
repeated in
response

Sender
Context
repeated in
response

 62

Test
Number ENIP Command

Fuzzed
Field Protocol

Expected
Fuzzed
Response

Actual
Fuzzed
Response

T7
List
Services/Identity/Interfaces Options TCP

Packet
discarded

Deviation:
See
ListServices
Results
section

T8
List
Services/Identity/Interfaces Options UDP

Packet
discarded

Deviation:
See
ListServices
Results
section

T9 UnRegisterSession
Session
Handle TCP

Error 0x03
TCP close

Deviation:
Error 0x03
No TCP close

T10 UnRegisterSession Status TCP
Error 0x03
TCP close

Deviation:
Error 0x03
No TCP close

T11 UnRegisterSession
Sender
Context TCP TCP close TCP close

T12 UnRegisterSession Options TCP
Error 0x03
TCP close

Deviation:
Error 0x03,
no TCP close

T13
UnRegisterSession UDP
Functionality N/A UDP Error 0x01 Error 0x01

T14 SendRRData
Session
Handle TCP Error 0x03

Deviation:
See
SendRRData
Results
Section

T15 SendRRData Status TCP TCP ACK

Deviation:
See
SendRRData
Results
Section

T16 SendRRData
Sender
Context TCP

Successful
Response
with Sender
Context
returned

Successful
Response
with Sender
Context
returned

T17 SendRRData Options TCP TCP ACK

Deviation:
See
SendRRData
Results
Section

T18 SendRRData
Interface
Handle TCP Error 0x03 Error 0x03

 63

Test
Number ENIP Command

Fuzzed
Field Protocol

Expected
Fuzzed
Response

Actual
Fuzzed
Response

T19 SendRRData TimeOut TCP Error 0x03

Deviation:
See
SendRRData
Results
Section

T20 SendUnitData
Session
Handle TCP Error 0x03

Deviation:
See
SendUnitData
Results
Section

T21 SendUnitData Status TCP TCP ACK

Deviation:
See
SendUnitData
Results
Section

T22 SendUnitData
Sender
Context TCP

Successful
Response
with Sender
Context
returned

Successful
Response
with Sender
Context
returned

T23 SendUnitData Options TCP TCP ACK

Deviation:
See
SendUnitData
Results
Section

T24 SendUnitData
Interface
Handle TCP Error 0x03 Error 0x03

T25 SendUnitData TimeOut TCP Error 0x03

Deviation:
See
SendUnitData
Results
Section

T26 Reserved for Legacy
Command
Field TCP

Error 0x03 or
success

Error 0x03 or
success

T27 Reserved for Legacy
Command
Field UDP

Error 0x01 or
success

Error 0x01 or
success

T28 Reserved for Future Use
Command
Field TCP Error 0x03 Error 0x03

T29 Reserved for Future Use
Command
Field UDP Error 0x01 Error 0x01

 64

1. ENIP ListServices Results

a. T1 and T2 Test Cases

The SUT responds as expected to the ListServices commands (TCP and UDP)

with non-zero values in the Session Handle field, i.e., by ignoring the specified session

handle and returning the same session handle for the established session in the response.

b. T3 and T4 Test Cases

When non-zero values are sent in the Status field, the SUT responds as expected,

i.e., by returning a TCP FIN, ACK if the command is sent over TCP and dropping the

packet if the command is sent over UPD.

c. T5 and T6 Test Cases

The SUT responds predictably to the ListServices commands with fuzzed Sender

Context fields over both TCP and UDP, i.e., by returning the same Sender Context value

in the response.

d. T7 and T8 Test Cases

Per the ENIP specification, receivers must discard any ENIP ListServices packets

with non-zero values in the Options field [16]. For both TCP and UDP, the SUT does not

discard the ListServices command with a non-zero value in the Options field, but sends a

ENIP response with a 0x03 “Incorrect data” [16] error code.

2. ENIP UnRegisterSession Results

a. T9 Test Case

For the Session Handle field, the MicroLogix implementation of the

UnRegisterSesssion command returns a 0x03 “Incorrect data” [16] response and does not

terminate the TCP connect as expected. This is a deviation from the specification that

dictates a “receiver shall not reject the UnRegisterSession due to unexpected values in the

encapsulation header,” including invalid Session Handles and non-zero Status

inputs [16].

65

b. T10 Test Case

When the UnRegisterSession command is fuzzed with invalid Status codes and

valid Session Handles, the MicroLogix returns a 0x03 “Incorrect data” [16] error and the

TCP connection is not terminated. This is a deviation from the specification observed in

T9 with invalid Session Handle inputs.

c. T11 Test Case

When fuzzing the Sender Context field, the MicroLogix implementation of the

UnRegisterSesssion command returns expected responses and terminates the TCP

connection. This complies with the ENIP requirement that receivers do not reject

UnRegisterSession commands with unexpected values in the encapsulation header but

close the underlying TCP connection instead [16].

d. T12 Test Case

When the Options field is set to a non-zero number, the SUT returns a 0x03

“Incorrect data” [16] response and the TCP connection is not terminated. The

specification provides conflicting guidance on the expected behavior SUT behavior. Per

the CIP Networks Library: Volume 2 EtherNet/IP Adaptation of CIP specification, “the

receiver shall discard packets with a non-zero option field” [16]. The specification also

says that the receiver shall not reject UnRegisterSession commands due to “unexpected

values in the encapuslation header,” including non-zero Options and that the TCP

connection shall be terminated [16].

In order to confirm the TCP session is not closed by UnRegisterSession request

with an invalid Options field, an additional test is conducted. Following an

UnRegisterSession command with a fuzzed Options field, a CIP Forward Open command

is sent to the PLC. The SUT responds to the request with “Success” packet, confirming

that the session remains open.

 66

e. T13 Test Case

The MicroLogix complies with the ENIP requirement that an UnRegisterSession

command sent over UDP shall be rejected with an 0x01 “Invalid or Unsupported” [16]

error code.

3. ENIP SendRRData Results

There are multiple fields where the AB/RA MicroLogix’s implementation of the

ENIP protocol deviates from the expected responses derived from the CIP Networks

Library: Volume 2 EtherNet/IP Adaptation of CIP [16] specification. The expected and

observed behaviors of each fuzzed field are discussed below.

a. T14 Test Case

The Session Handle is returned by the target in the ENIP Register Session reply

packet, and is to be used in subsequent encapsulation commands within the ENIP session.

When tested with session handles other than the valid handle of the ENIP session, the

reply is not a 0x03 “Incorrect data” [16] error code as expected, but a successful service

response. The CIP data in the response is identical to a message with a valid session

handle (see Appendix A). However, the Wireshark protocol analyzer does not properly

format the CIP Connection Manager data in replies to the invalid session handles. This is

hypothesized to be a result of Wireshark attempting to match request/reply packet pairs

with valid session handles.

b. T15 Test Case

The Status field indicates whether a receiver successfully executes a command. A

zero response indicates success. Any other responses correlate to general error codes.

According to the ENIP specification, the receiver must ignore all ENIP requests with a

non-zero Status field, i.e., does not return a reply [16]. When testing the Status field of

the SendRRData command, requests with Status fields between 0x00000000 and

0x0000FFFF are accepted and the SUT provides a successful ENIP-encapsulated CIP

response with Status code 0x00000000. This deviates from the specification requirements

[16]. When requests are sent with Status codes between 0x00010000 and 0xFFFFFFFF,

67

the SUT performs as expected and provides no ENIP or ENIP-encapsulated CIP

response. Only a TCP ACK packet is sent from the SUT to the fuzzer.

c. T16 Test Case

The Sender Context field allows a sender to place any data in the field. The

receiver returns the same data in its response, which can be used by the sender to match

requests with their replies [16]. For all tests, the returned values of this field match the

expected values.

d. T17 Test Case

The Options field allows a sender to provide additional information about the

command [16]. For the SendRRData Request, the specification dictates that the Options

field be set to zero, and that the “receiver shall discard any packets with a non-zero

option field” [16]. When tested with different non-zero options, the SUT returns

successful replies, i.e., the returned status is 0x00000000.

e. T18 Test Case

The Interface Handle field identifies the intended communications interface of the

command and must be set to zero for the SendRRData request [16]. When this field is set

to a non-zero value, the SUT returns an ENIP response with the error code 0x03, as

expected.

f. T19 Test Case

The Timeout field indicates the number of seconds the requested operation shall

persist until it expires. When the field is set to zero, the timeout of the ENIP protocol

assumes the timeout of the encapsulated protocol (CIP). When encapsulating CIP, the

sender must set the Timeout field to zero and the receiver is to ignore the field [16]. The

expected result for testing non-zero inputs in the Timeout field with CIP encapsulation is

an ENIP response with the 0x03 “Incorrect data” [16] error code. However, the SUT

returns successful ENIP-encapsulated CIP responses with the Timeout field set to 1024.

 68

4. ENIP SendUnitData Results

Similar deviations from specification observed with SendRRData testing are also

present in the SendUnitData testing.

a. T20 to T23 Test Cases

The fuzzing of Session Handle, Status, and Options fields demonstrate the same

unexpected behavior observed in the SendRRData responses described above.

b. T24 Test Case

When the Interface Handle field is set to a non-zero value, the SUT returns an

ENIP response with the 0x03 “Incorrect data” [16] error code, as expected.

c. T25 Test Case

The testing of the Timeout field shows unexpected behavior. The expected result

for testing non-zero inputs in the Timeout field with CIP encapsulation is an ENIP

response with a 0x03 “Incorrect data” [16] error code. However, the SUT returns

successful ENIP-encapsulated CIP responses with the Timeout field set to zero. The

unexpected SendUnitData responses are different than the unexpected SendRRData

responses fuzzed under the same conditions. SendUnitData returns successful responses

with the Timeout field set to zero, whereas SendRRData returns successful responses

with the Timeout field set to 1024.

5. ENIP Reserved for Legacy Use Results

a. T26 and T27 Test Cases

The expected responses for the Legacy Use commands over TCP and UDP are a

successful response, a 0x03 “Incorrect data” [16] response, or a 0x01 “Invalid or

Unsupported” [16] response. Without knowledge of the packet structure for the Legacy

Use commands, testing is limited to test packets that only include the individual Legacy

Use command with no additional data attached. All commands sent over TCP return

ENIP responses with the error code 0x03, except for the command code 0x01, which

returns a successful ENIP response with the SUT’s IP address in the data field. The

 69

Wireshark dissector recognized the commands 0x72 and 0x73 as Indicate Status and

Cancel, respectively [16]. UDP-sent commands behave similarly to TCP-sent commands

with regards to returning a successful response to command code 0x01. For all other

command codes, UDP-sent commands returned the error code 0x01.

6. ENIP Reserved for Future Use Results

a. T28 and T29 Test Cases

Responses to the Future Use commands are expected to be an error code, either

0x03 or 0x01. The SUT returns the error code 0x03 status codes for TCP test cases and

the error code 0x01 for UDP test cases.

B. CIP TEST RESULTS

The CIP Fuzzing tests do not cause any faults or disruption of service to the

MicroLogix SUT. The test results indicate that MicroLogix does not support several of

the tested commands. Table 10 summarizes both the expected and observed responses to

the test cases.

Table 10. CIP Fuzz Testing Results

Test
Number CIP Command Fuzzed Field

Expected Fuzzed
Response

Actual Fuzzed
Response

T30 Get_Attributes_All Class Class specific

Class specific
See results
below

T31 Get_Attributes_All Instance

Attribute or Path
destination
unknown
responses

Attribute or
Path destination
unknown
responses

T32 Get_Attribute_List Class

Attribute, Service
not supported, or
Path destination
unknown
responses

Service not
supported or
Path destination
unknown
responses

T33 Get_Attribute_List Attribute_list

Attribute, Service
not supported, or
Path destination
unknown
responses

Service not
supported or
Path destination
unknown
responses

 70

Test
Number CIP Command Fuzzed Field

Expected Fuzzed
Response

Actual Fuzzed
Response

T34 Get_Attribute_List Instance

Attribute, Service
not supported, or
Path destination
unknown
responses

Service not
supported or
Path destination
unknown
responses

T35 Get_Attribute_List Attribute_count

Error status or no
response for
Attribute_count
fields exceeding
maximum
allowable

TCP ACK for
values greater
than 223
Attributes in
Attribute_count

T36 Get_Attribute_Single Class Class specific

Class specific
See results
below

T37 Get_Attribute_Single Instance

Attribute not
supported or
Service not
supported

Service not
supported,
Attribute not
supported, or
Path destination
unknown

T38 Get_Attribute_Single Attribute
Service not
supported

Service not
supported or
Attribute not
supported

T39 Find_Next_Object_Instance Class

Service not
supported or Path
destination
unknown

Service not
supported or
Path destination
unknown

T40 Find_Next_Object_Instance Instance

Service not
supported or Path
destination
unknown

Service not
supported or
Path destination
unknown

T41 Find_Next_Object_Instance

Maximum
Returned
Values

Service not
supported

Service not
supported

1. CIP Get_Attributes_All Results

To determine a baseline MicroLogix response for the Get_Attributes_All

command, a packet with Class 0x01 (Identity) and Instance 0x01 is sent to the SUT. All

CIP devices are required to support Instance 0x01 of the Identity Object [15]. The

MicroLogix returns a successful CIP response with the seven required attributes: Vendor

ID, Device Type, Product Code, Major and Minor Revisions, Status, Serial Number, and

 71

Product Name (see Table 11). The thirteen optional or conditional attributes defined in

the specification are not observed in the MicroLogix responses [15].

Table 11. Identity Object Instance Attributes. Adapted from [15].

a. T30 Test Case

When the Class field is fuzzed with values from 0x0 to 0xFF, with Instance 0x01, the

following behavior was observed:

• Three different Class field inputs between 0x00 and 0xFF return
successful CIP packets with attribute information: 0x01 (Identity), 0xF5
(TCP/IP Interface), and 0xF6 (Ethernet Link).

• Three Class field inputs return General Status 0x08 “Service not
supported” [15] responses: 0x02 (Message Router), 0x06 (Connection
Manager), and 0x67 (PCCC Object).

• The remaining Class inputs return CIP responses with General Status 0x05
“Path destination unknown” [15]. This code is used when the target device
does not recognize a class, instance or structure element in the object’s
request [15].

 72

b. T31 Test Case

When fuzzing the Instance field with values from 0x00 to 0xFF with the Class

field set to 0x01, the SUT responds successfully to two Instance inputs: 0x00 and 0x01.

The responses for all other Instance inputs indicate a General Status 0x05 “Path

destination unknown” [15]. This is an expected response.

The Instance 0x00 is handled as a special case because it references the Class

instead of a particular Instance within the class [15]. Therefore, the response of the

Instance 0x00 is at the Class level as shown in Table 12.

Table 12. Identity Object Get_Attributes_All Response for Instance 0x00.
Source: [15].

The other successful response, Instance 0x01, is used as a baseline command and

is previously explained.

2. CIP Get_Attribute_List Results

To determine baseline functionality, a request is sent to the SUT with the

following parameters: Class 0x01, Instance 0x01, and Attribute 0x01. There are two

possible expected SUT responses. If the SUT supports the command, it is to respond with

the requested Attribute (Vendor ID) information. However, since Get_Attribute_List is

an optionally supported command at the Class and Instance level [15], the SUT may not

provide the requested Attribute response. When tested, the MicroLogix responds with a

General Status 0x08 “Service not supported” [15] packet.

73

a. T32 Test Case

To test the Class field with values 0x00 to 0xFF, the Instance and Attribute fields

are set to 0x01 while Class is fuzzed. The SUT returns a General Status 0x08 “Service

not supported” [15] CIP response for six of the Class field inputs: 0x01 (Identity), 0x02

(Message Router), 0x06 (Connection Manager), 0x67 (PCCC Object), 0xF5 (TCP/IP

Interface), and 0xF6 (Ethernet Link). All other responses have a General Status of 0x05

“Path destination unknown” [15].

b. T33 Test Case

While testing the Instance field with values 0x00 to 0xFF, the Class and Attribute

fields are set to 0x01. Only Instances 0x00 and 0x01 return General Status 0x08 “Service

not supported” [15] responses. All other tested Instances return General Status 0x05

“Path destination unknown” [15] responses.

c. T34 Test Case

When fuzzing the Attribute field with the Class and Instance fields set 0x01, the

SUT returns General Status 0x08 “Service not supported” [15] responses for each

Attribute tested. The tested Attribute values are 0x00 to 0xFF.

d. T35 Test Case

To determine the effects of exceeding the maximum number of attributes that can

be requested, packets with increasing Attribute_Count are sent to the SUT. Attribute IDs

1 through 7 are utilized and repeated due to their observed presence from the

Get_Attributes_All response previously conducted. The SUT returns CIP responses with

Status 0x08 “Service not supported” [15] for Get_Attribute_List requests with

Attribute_Counts from 0 to 223. When the SUT receives a Get_Attribute_List request

with an Attribute_Count of 224 or greater, it does not send a CIP response. The SUT

sends only a TCP ACK in response.

 74

3. CIP Get_Attribute_Single Results

The Get_Attribute_Single request is an optional command and thus it is

hypothesized that the response would be a ‘Service not supported” [15] message. Per the

specification [15], the Identity Object only supports this command if Class Attributes are

implemented. The observed response from the Get_Attributes_All tests for the Identity

Object with Instance 0x00 and Attribute 0x01 return default values, indicating no Class

Attributes are set for the Identity Object.

a. T36 Test Case

To test the Class field, the Instance field is set to 0x00 and the Attribute field is

set to 0x01. The SUT returns a “Service not supported” CIP response for six of the Class

field inputs: 0x01 (Identity), 0x02 (Message Router), 0x06 (Connection Manager), 0x67

(PCCC Object), 0xF5 (TCP/IP Interface), and 0xF6 (Ethernet Link). All other responses

have a General Status 0x05 “Path destination unknown” [15].

b. T37 Test Case

When testing the Instance field, the Class and Attribute fields are set to 0x01. The

SUT returns “Service not supported” messages when it receives request packets with the

Instance field set to 0x00. When it receives requests with Instance 0x01, the SUT returns

the General Status 0x14 “Attribute not supported” [15] messages. All other Instances

returned General Status 0x05 “Path destination unknown” [15] responses.

c. T38 Test Case

To test the Attribute field, packets are sent with the Class and Instance fields set

to 0x01. The SUT responds to all fuzzed Attribute inputs with the General Status 0x14

“Attribute not supported” [15] messages.

4. CIP Find_Next_Object_Instance Results

In order to establish baseline behavior for the Find_Next_Object_Instance

request, test packets with Class 0x01 (Identity) and Instance 0x00 fields are sent to the

SUT. The Identity Object conditionally supports the command if non-consecutive

 75

Instances exit [15]. From the Get_Attributes_All test using the Identity Object, no non-

consecutive Instances are observed. Therefore, our expected and observed behavior of the

SUT is to return a General Status 0x08 “Service not supported” [15] message.

a. T39 Test Case

To test the Class field, the Instance field is set to 0x00 while Class is fuzzed. The

SUT returns a General Status 0x08 “Service not supported” [15] CIP response for six of

the Class field inputs: 0x01 (Identity), 0x02 (Message Router), 0x06 (Connection

Manager), 0x67 (PCCC Object), 0xF5 (TCP/IP Interface), and 0xF6 (Ethernet Link). All

other responses have a General Status 0x05 “Path destination unknown” [15].

b. T40 Test Case

When testing the Instance field, Class is set to 0x01. Requests with Instance 0x00

and 0x01 return General Status 0x08 “Service not supported” [15] responses. All other

fuzzed Instance inputs return General Status 0x05 “Path destination unknown” [15]

messages.

c. T41 Test Case

To test the Maximum Returned Values field, Class is set to 0x01 and Instance is

set to 0x00. The Maximum Returned Values field is tested with inputs between 0x00 and

0xFF. All requests return General Status 0x08 “Service not supported” [15] responses.

C. PCCC TEST RESULTS

The PCCC tests do not cause any faults or disruption of service to the MicroLogix

1100 (T42-T72) or ControlLogix 1756-L71 (T73) SUTs. Table 13 summarizes both

expected and observed responses to the test cases. The N/A indicator in the Fuzzed Field

column indicates the command is functionally tested only.

 76

Table 13. PCCC Fuzz Testing Results

Test
Number PCCC Command Fuzzed Field

Expected
Fuzzed
Response

Actual Fuzzed
Response

MicroLogix Tests

T42 Echo Data: 0 bytes

Response with
0 bytes
attached

Response with 0 bytes
attached

T43 Echo
Data: Max
Length

243-byte
maximum 247-byte maximum

T44 Echo Data: 8 bytes

Response with
8 bytes
attached

Response with 8 bytes
attached

T45 Echo Data: 9 bytes

Response with
9 bytes
attached

Response with 9 bytes
attached

T46 Echo Data: 10 bytes

Response with
10 bytes
attached

Response with 10 bytes
attached

T47 Echo Data: 40 bytes

Response with
40 bytes
attached

Response with 40 bytes
attached

T48 Echo
Data:
243 bytes

Response with
243 bytes
attached

Response with 243
bytes attached

T49 Echo

Data: Maximum
bytes returned by
module with no
errors

Response with
same number
of bytes
attached as
request

Response with 247
bytes attached

T50 Echo Data: 248 bytes
Response with
error message

“Routing failure,
request packet too
large” [17] response

T51 Echo Data: 256 bytes
Response with
error message

“Routing failure,
request packet too
large” [17] response

T52
Protected Typed
File Read Size

Response with
requested data
or error
message

“illegal command or
format” [17] response

T53
Protected Typed
File Read Tag

Response with
requested data
or error
message

“illegal command or
format” [17] response

T54
Protected Typed
File Read Offset

Response with
requested data
or error
message

“illegal command or
format” [17] response

 77

Test
Number PCCC Command Fuzzed Field

Expected
Fuzzed
Response

Actual Fuzzed
Response

T55
Protected Typed
File Read File Type

Response with
requested data
or error
message

“illegal command or
format” [17] response

T56
Protected Typed
File Write Size

Response with
no errors or
error message

“illegal command or
format” [17] response

T57
Protected Typed
File Write Tag

Response with
no errors or
error message

“illegal command or
format” [17] response

T58
Protected Typed
File Write Offset

Response with
no errors or
error message

“illegal command or
format” [17] response

T59
Protected Typed
File Write File Type

Response with
no errors or
error message

“illegal command or
format” [17] response

T60
Protected Typed
File Write Data

Response with
no errors or
error message

“illegal command or
format” [17] response

T61

Protected Typed
Logical Write with
Three Address
Fields Size

Response with
no errors or
error message

“illegal command or
format” [17] or “access
denied, improper
privilege” [17]
responses

T62

Protected Typed
Logical Write with
Three Address
Fields File No.

Response with
no errors or
error message

“illegal command or
format” [17] response

T63

Protected Typed
Logical Write with
Three Address
Fields File Type

Response with
no errors or
error message

“illegal command or
format” [17] response

T64

Protected Typed
Logical Write with
Three Address
Fields Element No.

Response with
no errors or
error message

“illegal command or
format” [17] response

T65

Protected Typed
Logical Write with
Three Address
Fields Sub-Element No.

Response with
no errors or
error message

“illegal command or
format [17] response

T66 Unprotected Read Address

Response with
requested data
or error
message

“illegal command or
format” [17] response

 78

Test
Number PCCC Command Fuzzed Field

Expected
Fuzzed
Response

Actual Fuzzed
Response

T67 Unprotected Read Size

Response with
requested data
or error
message

“illegal command or
format” [17] response

T68
Diagnostic Status-
Functionality Test N/A

Diagnostic
Status
information
response

Diagnostic Status
information response

T69
Read Diagnostic
Counters Address

Response with
requested data
or error
message

“illegal command or
format” [17] response

T70
Read Diagnostic
Counters Size

Response with
requested data
or error
message

“illegal command or
format” [17] response

T71
Restart-
Functionality Test N/A

Response with
error message

“illegal command or
format” [17] response

T72

Download
Completed-
Functionality Test N/A

Response with
error message

“access denied,
improper privilege”
[17] response

ControlLogix Tests

T73

Protected Typed
Logical Read with
Three Address
Fields

File No., File
Type SUT Fault

No fault. EXT STS
“Address doesn’t point
to something usable”
[17] response

1. PCCC Echo Results

a. T42 to T51 Test Cases

The SUT returns successful responses to properly formatted PCCC Echo requests.

The data specified in Echo requests, up to 247 bytes, are successfully transmitted back to

the fuzzer in a CIP-encapsulated response packet. The observed 247-byte limit exceeds

the maximum of 243 data bytes indicated in the specification [17]. When Echo

commands are transmitted with greater than 247 data bytes attached, the SUT returns a

CIP-encapsulated response indicating “Routing failure, request packet too large.”

79

2. PCCC Protected Typed File Read Results

a. T52-T55 Test Cases

The SUT responds uniformly to all fuzzed Size, Tag, Offset, and File Type field

inputs by returning a STS 0x10 “illegal command or format” [17] code.

3. PCCC Protected Typed File Write Results

a. T56-T60 Test Cases

The SUT responds to all fuzzed Size, Tag, Offset, File Type, and Data field inputs

by returning a STS 0x10 “illegal command or format” [17] code.

4. PCCC Protected Logical Write with Three Address Fields Results

a. T61 Test Case

When fuzzing the Byte Size field of the command, all inputs except 0x00 return

successful CIP-encapsulated PCCC packets with a STS 0x10 “illegal command or

format” [17] code. When the Byte Size field is set to 0x00, the STS field returns 0xF0,

indicating an EXT STS is appended. The returned EXT STS byte is 0x0B, indicating

“access denied, improper privilege” [17].

b. T62-T65 Test Cases

The SUT responses uniformly to all fuzzed File Number, File Type, Element

Number, and Sub-Element Number field inputs by returning a STS 0x10 “illegal

command or format” [17] code.

5. PCCC Unprotected Read Results

a. T66-T67 Test Cases

The SUT responses uniformly to all fuzzed Address and Size field inputs by

returning a STS 0x10 “illegal command or format” [17] code.

 80

6. PCCC Diagnostic Status Results

a. T68 Test Case

The Diagnostic Status command returns a successful CIP-encapsulated PCCC

response. The specification [17] states that the MicroLogix 1000’s response is 24 bytes

[17]. The MicroLogix 1100 returns 25 bytes of data. Due to this difference, it is not

possible to determine the exact meaning of the returned byte values. It appears that the

returned data provides information on the SUT’s system status as well as an ASCII

representation that displays the SUT’s model information: 1763-LEC.

7. PCCC Read Diagnostic Counters Results

a. T69 Test Case

When fuzzing the Address field of the Read Diagnostic Counters command, the

SUT returns a CIP-encapsulated PCCC response with a STS 0x10 “illegal command or

format” [17] code, for all cases except when the Address field is set to 0x0000. During

testing, the Size field is constant at 0x01.

b. T70 Test Case

When fuzzing the Size field, the SUT responds with the requested number of

bytes when the Size inputs are below 0x6D. These responses contain bytes with zero and

non-zero values. The SUT responds to any input of 0x6D or greater with a packet

containing no returned data and a STS 0x10 “illegal command or format” [17] code.

8. PCCC Restart Results

a. T71 Test Case

Responses to the Restart command functionality test have STS 0x10 “illegal

command or format” [17] codes.

81

9. PCCC Download Completed Results

a. T72 Test Case

The SUT responds to the Download Completed command with an EXT STS

0x0B “access denied, privilege violation” [17] code.

10. PCCC Protected Logical Read with Three Address Fields on
ControlLogix Results

a. T73 Test Case

We speculate that the MicroLogix vulnerability related to this command [9]

would be present in the more advanced ControlLogix PLC due to the common practice of

reusing legacy code without proper testing in different products from the same

manufacturer. Fuzzing the File No. and File Type fields of the Protected Logical Read

with Three Address Fields does not produce a fault in the ControlLogix, as observed in

the MicroLogix. This proves our hypothesis false.

There is an observable difference between the MicroLogix and ControlLogix

responses to the command when File No. and File Type are fuzzed. From previous testing

[1], we observe that MicroLogix responds in one of five ways: 1) responds with an STS

0x10 “illegal command or format” code, 2) responds with an EXT STS 0x0B “Access

denied, improper privilege” [17] code, 3) responds with an EXT STS 0x0C “condition

cannot be generated, resource is not available” [17] code, 4) responds with data, or 5)

responds by entering a fault condition [17]. Table 14 illustrates sample request packet

field contents and the range of SUT responses.

Table 14. Example MicroLogix 1100 Responses to PCCC Protected Logical
Read with Three Address Fields Command

Byte Size File Type File No. Element No. Sub-element No. SUT Response

0x01 0x10 0xD0 0x84 0x00 STS 0x10

0x57 0x75 0x65 0x10 0x00 EXT STS 0x0B

0x56 0xBD 0x4C 0x59 0x00 EXT STS 0x0C

0x1C 0x2A 0x62 0x01 0x00 Data response

0xC8 0x03 0x47 0xBC 0x00 Fault response

 82

In all tests, the ControlLogix SUT returns a STS 0xF0 “Error code in the EXT

STS byte” code and an EXT STS byte of 0x06 “Address doesn’t point to something

usable” [17]. This difference in SUT responses may be a useful tool in fingerprinting the

manufacturer and model of a target PLC.

D. DISCUSSION

Our fuzz testing does not uncover any MicroLogix 1100 vulnerabilities.

However, we observe some deviations from the expected responses in the MicroLogix

implementation of ENIP and PCCC protocols. No CIP deviations are observed. Multiple

optional tested CIP commands are not supported by MicroLogix 1100 PLCs. Table 15

provides a summary of the discovered MicroLogix unexpected responses.

Table 15. Summary of MicroLogix 1100Unexpected Responses

Test
Number Command Fuzzed Field Protocol

Expected
Fuzzed
Response

Deviation
Response

ENIP Tests

T7 List Services/Identity/Interfaces Options TCP
Packet
discarded

Error 0x03
response

T8 List Services/Identity/Interfaces Options UDP
Packet
discarded

Error 0x03
response

T9 UnRegisterSession
Session
Handle TCP

Error 0x03
TCP close

Error 0x03
response
No TCP close

T10 UnRegisterSession Status TCP
Error 0x03
TCP close

Error 0x03
response
No TCP close

T12 UnRegisterSession Options TCP
Error 0x03
TCP close

Error 0x03
response
 no TCP
close

T14 SendRRData
Session
Handle TCP Error 0x03

No error,
Successful
response

T15 SendRRData Status TCP TCP ACK

Successful
responses for
Status fields
between
0x00000000
and
0x0000FFFF

 83

Test
Number Command Fuzzed Field Protocol

Expected
Fuzzed
Response

Deviation
Response

T17 SendRRData Options TCP TCP ACK
Successful
response

T19 SendRRData Timeout TCP Error 0x03

Successful
response,
Timeout field
1024

T20 SendUnitData
Session
Handle TCP Error 0x03

No error,
Successful
response

T21 SendUnitData Status TCP TCP ACK

Successful
responses for
Status fields
between
0x00000000
and
0x0000FFFF

T23 SendUnitData Options TCP TCP ACK
Successful
response

CIP Tests
No observed deviations from specification: Tested optional commands not implemented by
MicroLogix 1100

PCCC Tests

T43 PCCC Echo
Data: Max
Length TCP

243-byte
maximum

247-byte
maximum

T52-
T55 Protected Typed File Read

Size, Tag,
Offset, File
Type TCP

Data
response

“illegal
command or
format” [17]
response

T56-
T60 Protected Typed File Write

Size, Tag,
Offset, File
Type, Data TCP

Data
response

“illegal
command or
format” [17]
response

T61-
T65

Protected Typed Logical Write
with Three Address Fields

Size, File
No., File
Type,
Element No.
Sub-Element
No. TCP

Response
with no
errors or
error
message

“illegal
command or
format” [17]
response

T66-
T67 Unprotected Read

Address,
Size TCP

Data
response

“illegal
command or
format” [17]
response

T68 Diagnostic Status

N/A,
Functionality
Test TCP

24-byte
Diagnostic
Status
information
response

25-byte
Diagnostic
Status
information
response

 84

The deviations in the ENIP implementation may be the result of manufacturer

implementation decisions. A potential explanation for the PCCC deviations is that the

reference specification [9] applies to the MicroLogix 1000 model. While we expect the

implementation to be similar between the 1000 and 1100 models, there are differences in

processing capability, memory allocations, and functionality between the PLCs, which

may account for the deviations.

Our ControlLogix testing disproves the hypothesis that the PCCC Protected

Typed Logical Read with Three Address Fields vulnerability in MicroLogix 1100 also

affects the ControlLogix 1756-L71. In contrast to the fault condition observed on the

MicroLogix 1100, the ControlLogix 1756-L71 returns an error message upon receiving a

request with the File No. field ranges between 0x2 to 0x8 and the File Type is 0x47 or

0x48. Table 16 illustrates the ControlLogix response.

Table 16. Summary of ControlLogix 1756-L71 Response Deviations

Test
Number Command Fuzzed Field Protocol

Expected
Fuzzed
Response Deviation Response

T73

Protected Typed
Logical Read with
Three Address Fields

File No. (0x02-
0x08), File
Type (0x47 or
0x48) TCP

SUT
Fault

No fault. EXT STS 0x06
“Address doesn’t point
to something usable” [1]
response

The deviations may provide useful information for application-layer

fingerprinting of PLC devices. By cataloging the unique responses returned from the

MicroLogix 1100 and ControlLogix 1756-L71, we can begin compiling a corpus of PLC

response signatures. This can be used to classify PLC modules through traffic analysis.

 85

VI. CONCLUSION AND FURTHER WORK

A. SUMMARY

Motivated by the increasing employment of industrial control systems on U.S.

Navy vessels and the potential for vulnerabilities in the utilized communication protocols,

we aim to test the implementation of industrial network protocols on a PLC. Two

hypotheses drive our testing. The first hypothesis is that undiscovered software flaws

existed in the implementation of ENIP, CIP, and PCCC protocols used by the

MicroLogix PLCs. The second hypothesis is that network vulnerabilities known to exist

in older PLCs help inform on the robustness of the ICS network stack in more modern

PLCs.

To verify our hypotheses, we use a fuzz testing methodology to stress test selected

fields in target commands and monitor the system responses. To accomplish this, we use

the Scapy-based ENIP Fuzz program [9] and modify the code to expand the range of

testable protocol commands. We test our first hypothesis on the MicroLogix 1100 PLC

by selecting a range of commands from the ENIP, CIP, and PCCC protocols that were

not previously tested and systematically fuzzed the modifiable fields. Candidate protocol

commands are evaluated for fuzzing based on their likelihood of creating a fault

condition while not permanently damaging the test PLC or corrupting the functionality of

the MicroLogix system.

The results of our fuzz testing do not uncover any new vulnerabilities in the

MicroLogix 1100 PLC. However, we observe several unexpected responses in four

ENIP commands (List Services/Identity/Interfaces, UnRegisterSession, SendRRData, and

SendUnitData), and six PCCC commands (Echo, Protected Typed File Read, Protected

Typed File Write, Protected Logical Write with Three Address Fields, Unprotected Read,

and Diagnostic Status).

Our second hypothesis is tested by sending to the ControlLogix 1756-L71

specially crafted PCCC Protected Logical Read with Three Address Fields packets that

trigger a fault condition in the MicroLogix 1100 [9]. By replicating the fault-inducing

 86

packet configuration of the command and applying it to a more advanced PLC, we aim to

test if cross-generational vulnerabilities existed in AB/RA PLCs.

 Instead of entering a fault state, the ControlLogix 1756-L71 PLC returns an error

message upon receiving the fault-inducing test packets. This behavior disproves our

hypothesis that the same MicroLogix 1100 vulnerability would affect the ControlLogix

1756-L71 PLC.

B. FUTURE WORK

In addition to PLC fingerprinting, the unique SUT responses observed during our

testing may also be used by an intrusion detection system to catch malicious probing

activities. To provide a larger context and differentiation among various PLCs, we plan

to perform additional EtherNet/IP fuzz testing on the ControlLogix 1756-L71 and other

ControlLogix models. These tests will provide insights on whether the observed

response to the PCCC Protected Logical Read with Three Address Field command is

specific to that command or is common to all PCCC requests, and on whether the PCCC

support is the same or different across ControlLogix models.

Another extension to this work is to test the MicroLogix 1000 PLC to determine if

the deviations observed in the MicroLogix 1100 are unique to that model or if the

MicroLogix family uses a different implementation than detailed in the specification [17].

The scope of this thesis focuses on two different generations of AB/RA PLCs and

the EtherNet/IP protocol suite. The ENIP Fuzz program can be enhanced to support other

industrial protocols such as PROFINET or DNP3. The enhancement will provide a

flexible test platform, which can be used to perform penetration testing, intrusion

detection, and fingerprinting reconnaissance on a wide range of industrial control

systems.

87

APPENDIX A. ENIP COMMAND RESPONSES

The following Wireshark captures in Figures 56–93 illustrate test case responses

for each command. For certain test cases, the corresponding request command sent to the

SUT is also included to show how select fuzzed field inputs affect SUT responses. For

descriptions of SUT responses, see Chapter V: Test Analysis.

A. ENIP LISTSERVICES TEST CASES

This section shows the results of the ENIP ListServices test cases.

(1) T1 Results

Figure 56. ListServices Response over TCP (Fuzzed Session Handle)

 88

(2) T2 Results

Figure 57. ListServices Response over UDP (Fuzzed Session Handle)

(3) T3 Results

Figure 58. ListServices Response over TCP (Fuzzed Status)

 89

(4) T4 Results

Figure 59. ListServices Response over UDP (Fuzzed Status)

(5) T5 Results

Figure 60. ListServices Response over TCP (Fuzzed Sender Context)

 90

(6) T6 Results

Figure 61. ListServices Response over UDP (Fuzzed Sender Context)

(7) T7 Results

Figure 62. ListServices Response over TCP (Fuzzed Options)

 91

(8) T8 Results

Figure 63. ListServices Response over UDP (Fuzzed Options)

B. ENIP UNREGISTERSESSION TEST CASES

This section shows the results of the ENIP UnRegisterSession test cases.

(1) T9 Results

Figure 64. UnRegisterSession Response over TCP (Fuzzed Session Handle)

 92

(2) T10 Results

Figure 65. UnRegisterSession Response over TCP (Fuzzed Status)

(3) T11 Results

Figure 66. UnRegisterSession Response over TCP (Fuzzed Sender Context)

93

(4) T12 Results

Figure 67. UnRegisterSession Response over TCP (Fuzzed Options)

Figure 68. CIP Forward Open Response Following ENIP UnRegisterSession
Request with Fuzzed Options Field

 94

(5) T13 Results

Figure 69. UnRegisterSession Response over UDP (Functionality Test)

C. ENIP SENDRRDATA TEST CASES

This section shows the results of the ENIP SendRRData test cases.

(1) T14 Results

Figure 70. SendRRData Request over TCP (Fuzzed Session Handle)

95

Figure 71. SendRRData Response over TCP (Fuzzed Session Handle)

(2) T15 Results

Figure 72. SendRRData Request over TCP (Fuzzed Status)

 96

Figure 73. SendRRData Response over TCP (Fuzzed Status)

(3) T16 Results

Figure 74. SendRRData Response over TCP (Fuzzed Sender Context)

97

(4) T17 Results

Figure 75. SendRRData Request over TCP (Fuzzed Options)

Figure 76. SendRRData Response over TCP (Fuzzed Options)

 98

(5) T18 Results

Figure 77. SendRRData Response over TCP (Fuzzed Interface Handle)

(6) T19 Results

Figure 78. SendRRData Request over TCP (Fuzzed Timeout)

 99

Figure 79. SendRRData Response over TCP (Fuzzed Timeout)

D. ENIP SENDUNITDATA TEST CASES

This section shows the results of the ENIP SendUnitData test cases.

(1) T20 Results

Figure 80. SendUnitData Request over TCP (Fuzzed Session Handle)

 100

Figure 81. SendUnitData Response over TCP (Fuzzed Session Handle)

(2) T21 Results

Figure 82. SendUnitData Request over TCP (Fuzzed Status: 0x0000FFFF)

 101

Figure 83. SendUnitData Response over TCP (Fuzzed Status: 0x0000FFFF)

(3) T22 Results

Figure 84. SendUnitData Response over TCP (Fuzzed Sender Context)

 102

(4) T23 Results

Figure 85. SendUnitData Request over TCP (Fuzzed Options)

Figure 86. SendUnitData Response over TCP (Fuzzed Options)

103

(5) T24 Results

Figure 87. SendUnitData Response over TCP (Fuzzed Interface Handle)

(6) T25 Results

Figure 88. SendUnitData Request over TCP (Fuzzed Timeout)

 104

Figure 89. SendUnitData Response over TCP (Fuzzed Timeout)

E. ENIP RESERVED FOR LEGACY USE TEST CASES

This section shows the results of the ENIP Reserved for Legacy Use test cases.

(1) T26 Results

Figure 90. Reserved for Legacy Use Response over TCP
(Fuzzed Command Field)

 105

(2) T27 Results

Figure 91. Reserved for Legacy Use Response over UDP
(Fuzzed Command Field)

F. ENIP RESERVED FOR FUTURE USE TEST CASES

This section shows the results of the ENIP Reserved for Future Use test cases.

(1) T28 Results

Figure 92. Reserved for Future Use Response over TCP
(Fuzzed Command Field)

 106

(2) T29 Results

Figure 93. Reserved for Future Use Response over UDP
(Fuzzed Command Field)

107

APPENDIX B. CIP COMMAND RESPONSES

The following Wireshark captures in Figures 94–118 illustrate test case responses

for each command. For certain test cases, the corresponding request command sent to the

SUT is also included to show how select fuzzed field inputs affect SUT responses. For

descriptions of SUT responses, see Chapter V: Test Analysis.

A. CIP GET_ATTRIBUTES_ALL TEST CASES

This section shows the results of the CIP Get_Attributes_All test cases.

(1) T30 Results

The Get_Attributes_All request with a fuzzed Class field returns three types of

responses. Figure 94 illustrates a successful CIP response. Figure 95 shows a “Service

not supported” response. Figure 96 depicts a “Path destination unknown” response.

Figure 94. Get_Attributes_All Response over TCP (Class 0x01, Instance 0x01)

 108

Figure 95. Get_Attributes_All “Service Not Supported” Response over TCP
(Class 0x06, Instance 0x01)

Figure 96. Get_Attributes_All “Path Destination Unknown” Response over TCP
(Class 0x28, Instance 0x01)

109

(2) T31 Results

Figure 97 illustrates a “Path destination unknown response. Figure 98

demonstrates the response for the Identity Class with Instance 0x00.

Figure 97. Get_Attributes_All “Path Destination Unknown” Response over TCP
(Class 0x01, Instance 0x16)

Figure 98. Get_Attributes_All Response over TCP (Class 0x01, Instance 0x00)

B. CIP GET_ATTRIBUTE_LIST TEST CASES

This section shows the results of the CIP Get_Attributes_List test cases.

 110

(1) T32 Results

A Get_Attribute_List command with a fuzzed Class field returns two different

responses. Figure 99 shows a General Status 0x08 “Service not supported” [15] response

and Figure 100 illustrates a General Status 0x05 “Path destination unknown” [15]

response.

Figure 99. Get_Attribute_List Response over TCP (Class 0x01, Instance 0x01,
Attribute 0x01)

Figure 100. Get_Attribute_List Response over TCP (Class 0x7F, Instance 0x01,
Attribute 0x01)

111

(2) T33 Results

The Get_Attribute_List with fuzzed Instance field requests return two different

responses: General Status 0x08 “Service not supported” [15] responses (Figure 101) and

General Status 0x05 “Path destination unknown” [15] responses (Figure 102).

Figure 101. Get_Attribute_List “Service Not Supported” Response over TCP
(Class 0x01, Instance 0x01, Attribute 0x01)

 112

Figure 102. Get_Attribute_List “Path Destination Unknown” Response over
TCP (Class 0x01, Instance 0x01, Attribute 0x01)

 113

(3) T34 Results

The Get_Attribute_List command with a fuzzed Attribute field returns General

Status 0x08 “Service not supported” [15] responses as shown in Figure 103.

Figure 103. Get_Attribute_List “Service Not Supported” Response over TCP
(Class 0x01, Instance 0x01, Attribute 200)

 114

(4) T35 Results

A Get_Attribute_List request with the Attribute_count set to 223 is illustrated in

Figure 104. Figure 105 shows the SUT response. Get_Attribute_List commands with the

Attribute_count field exceeding 223 (Figure 106) receive a TCP ACK response (Figure

107).

Figure 104. Get_Attribute_List Request over TCP (Attribute_count: 223)

115

Figure 105. Get_Attribute_List Response over TCP (Attribute_count: 223)

Figure 106. Get_Attribute_List Request over TCP (Attribute_count: 224)

 116

Figure 107. Get_Attribute_List Response over TCP (Attribute_count: 224)

C. CIP GET_ATTRIBUTE_SINGLE TEST CASES

This section shows the results of the CIP Get_Attributes_Single test cases.

(1) T36 Results

Get_Attribute_Single with a fuzzed Class field returns either a “Service not

supported” response (Figure 108) or a “Path destination unknown response” (Figure 109).

Figure 108. Get_Attribute_Single “Service Not Supported” Response over TCP

 117

Figure 109. Get_Attribute_Single “Path Destination Unknown” Response
over TCP

(2) T37 Results

The Get_Attribute_Single command returns an “Attribute not supported”

response when the Instance field is set to 0x00 and Class and Attribute fields are 0x01

(Figure 110). When the Instance field is 0x01, with the same Class and Attribute fields,

the SUT returns a “Service not supported” message (Figure 111). All other Instance fields

with the Class and Attribute fields set to 0x01 return “Path destination unknown” (Figure

112).

 118

Figure 110. Get_Attribute_Single “Attribute Not Supported” Response over TCP

Figure 111. Get_Attribute_Single “Service Not Supported” Response over TCP

119

Figure 112. Get_Attribute_Single “Path Destination Unknown” Response
over TCP

(3) T38 Results

The MicroLogix responds to all Get_Attribute_Single requests with a fuzzed

Attribute field and the Class and Instance fields set to 0x00 with an “Attribute not

supported” message (Figure 113).

Figure 113. Get_Attribute_Single “Attribute Not Supported” Response over TCP

 120

D. CIP FIND_NEXT_OBJECT_INSTANCE TEST CASES

This section shows the results of the CIP Find_Next_Object_Instance test cases.

(1) T39 Results

The CIP Find_Next_Object_Instance command with a fuzzed Class field returns

“Service not supported” for six Class field inputs, as illustrated by Figure 114. All other

fuzzed Classes returned “Path destination unknown” responses (Figure 115).

Figure 114. Find_Next_Object_Instance “Service Not Supported” Response
over TCP

121

Figure 115. Find_Next_Object_Instance “Path Destination Unknown” Response
over TCP

(2) T40 Results

When testing the Instance field, Class is set to 0x01. Requests with Instance 0x00

and 0x01 return “Service not supported” responses (Figure 116). All other fuzzed

Instance inputs return “Path destination unknown” messages (Figure 117).

 122

Figure 116. Find_Next_Object_Instance “Service Not Supported” Response
over TCP

Figure 117. Find_Next_Object_Instance “Path Destination Unknown” Response
over TCP

123

(3) T41 Results

The Maximum Returned Values field is tested with inputs between 0x00 and

0xFF. All requests return General Status 0x08 “Service not supported” [15] responses

when the Class is set to 0x01 and Instance is set to 0x00 (Figure 118).

Figure 118. Find_Next_Object_Instance “Service Not Supported” Response
over TCP

 124

THIS PAGE INTENTIONALLY LEFT BLANK

 125

APPENDIX C. PCCC COMMAND RESPONSES

The following Wireshark captures in Figures 119 - 154 illustrate test case

responses for each command. For descriptions of SUT responses, see Chapter V: Test

Analysis.

A. PCCC ECHO TEST CASES

This section shows the results of the PCCC Echo test cases.

(1) T42 Results

Figure 119. Echo Response over TCP (0 Bytes Attached)

 126

(2) T43 Results

Figure 120. Echo Response over TCP (243 Bytes Attached)

(3) T44 Results

Figure 121. Echo Response over TCP (8 Bytes Fuzzed)

 127

(4) T45 Results

Figure 122. Echo Response over TCP (9 Bytes Fuzzed)

(5) T46 Results

Figure 123. Echo Response over TCP (10 Bytes Fuzzed)

 128

(6) T47 Results

Figure 124. Echo Response over TCP (40 Bytes Fuzzed)

(7) T48 Results

Figure 125. Echo Response over TCP (243 Bytes Fuzzed)

 129

(8) T49 Results

Figure 126. Echo Response over TCP (Maximum Number of Bytes without
Error Message: 247 Bytes Fuzzed)

(9) T50 Results

Figure 127. Echo Response over TCP (248 Bytes Fuzzed)

 130

(10) T51 Results

Figure 128. Echo Response over TCP (256 Bytes Fuzzed)

B. PCCC PROTECTED TYPED FILE READ TEST CASES

This section shows the results of the PCCC Protected Typed File Read test cases.

(1) T52 Results

Figure 129. Protected Typed File Read Response over TCP (Size Fuzzed)

 131

(2) T53 Results

Figure 130. Protected Typed File Read Response over TCP (Tag Fuzzed)

(3) T54 Results

Figure 131. Protected Typed File Read Response over TCP (Offset Fuzzed)

 132

(4) T55 Results

Figure 132. Protected Typed File Read Response over TCP (File Type Fuzzed)

C. PCCC PROTECTED TYPED FILE WRITE TEST CASES

This section shows the results of the PCCC Protected Typed File Write test cases.

(1) T56 Results

Figure 133. Protected Typed File Write Response over TCP (Size Fuzzed)

 133

(2) T57 Results

Figure 134. Protected Typed File Write Response over TCP (Tag Fuzzed)

(3) T58 Results

Figure 135. Protected Typed File Write Response over TCP (Offset Fuzzed)

 134

(4) T59 Results

Figure 136. Protected Typed File Write Response over TCP (File Type Fuzzed)

(5) T60 Results

Figure 137. Protected Typed File Write Response over TCP (Data Fuzzed)

D. PCCC PROTECTED LOGICAL WRITE WITH THREE ADDRESS
FIELDS TEST CASES

This section shows the results of the PCCC Protected Logical Write with Three

Address Fields test cases.

(1) T61 Results

The Protected Logical Write with Three Address Fields responds with an EXT

STS of 0x0B (“access denied, improper privilege”) when Byte Size is set to 0x00 (Figure

 135

138). All other Byte Size inputs return responses with STS of 0x10 (“illegal command or

format”) as demonstrated in Figure 139.

Figure 138. Protected Logical Write with Three Address Fields Response over
TCP (Byte Size 0x00)

Figure 139. Protected Logical Write with Three Address Fields Response over
TCP (Byte Size Fuzzed)

 136

(2) T62 Results

Figure 140. Protected Logical Write with Three Address Fields Response over
TCP (File No. Fuzzed)

(3) T63 Results

Figure 141. Protected Logical Write with Three Address Fields Response over
TCP (File Type Fuzzed)

 137

(4) T64 Results

Figure 142. Protected Logical Write with Three Address Fields Response over
TCP (Element No. Fuzzed)

(5) T65 Results

Figure 143. Protected Logical Write with Three Address Fields Response over
TCP (Sub-Element No. Fuzzed)

E. PCCC UNPROTECTED READ TEST CASES

This section shows the results of the PCCC Unprotected Read test cases.

 138

(1) T66 Results

Figure 144. Unprotected Read Response over TCP (Address Fuzzed)

(2) T67 Results

Figure 145. Unprotected Read Response over TCP (Size Fuzzed).

F. PCCC DIAGNOSTIC STATUS TEST CASES

This section shows the results of the PCCC Diagnostic Status test cases.

 139

(1) T68 Results

Figure 146. Diagnostic Status Response over TCP (Functionality Test)

G. PCCC READ DIAGNOSTIC COUNTERS TEST CASES

This section shows the results of the PCCC Read Diagnostic Counters test cases.

(1) T69 Results

Figure 147. Read Diagnostic Counters Response over TCP
(Address Fuzzed: 0x3455)

 140

(2) T70 Results

Figure 148. Read Diagnostic Counters Response over TCP (Size Fuzzed: 25)

Figure 149. Read Diagnostic Counters Response over TCP (Size Fuzzed: 75)

 141

H. PCCC RESTART TEST CASES

This section shows the results of the PCCC Restart test cases.

(1) T71 Results

Figure 150. Restart Response over TCP (Functionality Test)

I. PCCC DOWNLOAD COMPLETED TEST CASES

This section shows the results of the PCCC Download Completed test cases.

(1) T72 Results

Figure 151. Download Completed Response over TCP (Functionality Test)

 142

J. PCCC PROTECTED LOGICAL READ WITH THREE ADDRESS FIELDS
TEST CASES

(1) T73 Results

For comparison, Figure 152 illustrates a Protected Logical Read with Three

Address Fields request packet with File No. 0x03 and File Type 0x47 field inputs sent to

a MicroLogix 1100 PLC. The SUT enters a fault state upon receiving the packet, i.e., no

CIP response is observed. Figure 153 illustrates a similar request with identical File No.

and File Type fields sent to the ControlLogix PLC. Figure 154 displays the ControlLogix

PLC’s response to the test packet. The ControlLogix does not fault. The response packet

contains an EXT STS code of 0x06.

Figure 152. MicroLogix Protected Logical Read with Three Address Fields
Request over TCP (File No. 0x03 and File Type 0x47)

 143

Figure 153. ControlLogix Protected Logical Read with Three Address Fields
Request over TCP (File No. 0x03 and File Type 0x47)

Figure 154. ControlLogix Protected Logical Read with Three Address Fields
Response over TCP (File No. 0x03 and File Type 0x47)

 144

THIS PAGE INTENTIONALLY LEFT BLANK

 145

LIST OF REFERENCES

[1] J. Slay and M. Michael, “Lessons learned from the Maroochy Water breach,” in
Critical Infrastructure Protection, Boston, MA: Springer, 2008, pp. 73–82.

[2] J. R. Lindsay, “Stuxnet and the limits of cyber warfare,” Security Studies, vol. 22,
pp. 365–404, 2013.

[3] K. Zetter, “Inside the cunning, unprecedented hack of Ukrain’s power grid,”
March 3, 2016. [Online]. Available: https://www.wired.com/2016/03/inside-
cunning-unprecedented-hack-ukraines-power-grid/

[4] S. Young, “Dallas siren hack came via radio frequency, not computer, city says,”
April 10, 2017. [Online]. Available: www.dallasobserver.com/news/dallas-siren-
hack-done-by-radio-not-computer-9358087

[5] M. Swearingen, S. Brunasso, J. Weiss and D. Huber, “What you need to know
(and don’t) about the AURORA vulnerability,” Power Magazine, September 1,
2013. [Online]. Available: http://www.powermag.com/what-you-need-to-know-
and-dont-about-the-aurora-vulnerability/?pagenum=2

[6] J. Mulder, M. Schwartz, M. Berg, J. R. Van Houten, J. M. Urrea, M. A. King, A.
A. Clements and J. Jacob, “WeaselBoard: Zero-day exploit detection for
programmable logic controllers,” Albuquerque, NM, 2013.

[7] D. G. Peterson, “Digital bond,” January 19, 2012. [Online]. Available:
http://www.digitalbond.com/blog/2012/01/19/project-basecamp-at-s4/

[8] B. P. Miller, L. Fredriksen and B. So, “An empirical study of the reliability of
UNIX utilities,” Communications of the ACM 33, vol. 12, December 1990.

[9] F. Tacliad, “ENIP fuzz: A scapy-based EtherNet/IP fuzzer for security testing,”
M.S. thesis, Dept. of Computer Science., NPS, Monterey, CA, USA, 2016.

[10] M. Henry, M. Iacovelli and J. Thatcher, “DDG 1000 engineering control system
(ECS).” [Online]. Available: https://seagrant.mit.edu/ESRDC_library/Henry-
DDG-1000.pdf

[11] ICS-CERT, “Ongoing sophisticated malware campaign compromising ICS
(update E),” 2014. [Online]. Available: https://ics-cert.us-cert.gov/alerts/ICS-
ALERT-14-281-01B

[12] B. Freeman, “A new defense for Navy ships: Protection from cyber attacks,”
September 17, 2015. [Online]. Available: https://www.onr.navy.mil/en/Media-
Center/Press-Releases/2015/RHIMES-Cyber-Attack-Protection.aspx

 146

[13] R. Grandgenett, R. Gandhi and W. Mahoney, “Exploitation of Allen Bradley’s
implementation of EtherNet/IP for denial of service against industrial control
systems,” in 9th International Conference on Cyber Warfare and Security,
Purdue University, 2014.

[14] R. Grandgenett, W. Mahoney, and R. Gandhi, “Authentication bypass and remote
escalated I/O command attacks,” in Proceedings of the 10th Annual Cyber and
Information Security Research Conference, 2015.

[15] ODVA & ControlNet International, Ltd., The CIP Networks Library. Vol. 1.
Common Industrial Protocol (CIP), 3.22 ed., Ann Arbor, MI: Open DeviceNet
Vendor Association, Inc., 2017.

[16] ODVA & ControlNet International, Ltd., The CIP Networks Library Volume 2:
EtherNet/IP Adaptation of CIP, 1.23 ed., Ann Arbor, MI: Open DeviceNet
Vendor Association, Inc., 2017.

[17] Allen Bradley, DF1 Protocol and Command Set Reference Manual, Milwaukee,
WI, USA, October 1996.

[18] SECDEV, “Scapy,” accessed April 3, 2017. [Online]. Available:
http://www.secdev.org/projects/scapy/

[19] P. Brooks, “EtherNet/IP: Industrial protocol white paper,” October 2001.
[Online]. Available: http://literature.rockwellautomation.com/idc/groups/
literature/documents/wp/enet-wp001_-en-p.pdf

[20] V Schiffer on behalf of Rockwell Automation, “The Common Industrial Protocol
(CIP) and the Family of CIP Networks,” ODVA, Inc., Ann Arbor, MI, USA,
2016.

[21] Rockwell Automation, “Communicating with RA Products Using EtherNet/IP
Explicit Messaging (Rev 1.2),” Rockwell Autmation, 2001. [Online]. Available:
https://www.rockwellautomation.com/resources/downloads/rockwellautomation/p
df/sales-partners/technology-licensing/eipexp1_2.pdf

[22] ODVA, “The Common Industrial Protocol (CIP),” 2017. [Online]. Available:
https://www.odva.org/Technology-Standards/Common-Industrial-Protocol-
CIP/Overview

[23] ODVA, “Common Industrial Protocol (CIP),” 2006. [Online]. Available:
https://scadahacker.com/library/Documents/ICS_Protocols/ODVA%20-
%20CIP.pdf

 147

[24] Rockwell Automation, “Delivery of CIP over RA Serial DF1 Links (Rev. 1.1),”
Rockwell Automation, 2006. [Online]. Available:
https://www.rockwellautomation.com/resources/downloads/rockwellautomation/p
df/sales-partners/technology-licensing/CIPandPCCC_v1_1.pdf

[25] N. Champey, “Principles of EtherNet/IP Communication,” accessed April 24,
2017. Rueil-Malmaison, FR. [Online]. Available:
https://scadahacker.com/library/Documents/ICS_Protocols/Schneider%20-
%20Principles%20of%20EtherNetIP%20Communication.pdf

[26] Allen-Bradley / Rockwell Automation, “Enhanced DeviceNet communications
module,” May 2000. Milwaukee, WI, USA. [Online]. Available:
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/120
3-um014_-en-p.pdf

[27] R. Shapiro, S. Bratus, E. Rogers, and S. Smith, “Do-it-yourself SCADA
vulnerability testing with LZFuzz,” accessed April 15, 2017. [Online]. Available:
http://www.cs.dartmouth.edu/~sws/pubs/sbs11.pdf

[28] D. Aitel, “The advantages of block-based protocol analysis for security testing,”
February 4, 2002. [Online]. Available: http://www.immunitysec.com/downloads/
advantages_of_block_based_analysis.pdf

[29] Beyond Security, “Dynamic testing (fuzzing) on the Ethernet IP Protocol by
beSTORM Ethernet IP with beSTORM,” accessed April 25, 2017. [Online].
Available: http://www.beyondsecurity.com/dynamic_fuzzing_testing_
ethernet_IP_protocol

[30] A. Portnoy, P. Amini and R. Sears. “Sulley,” accessed April 20, 2017. [Online].
Available: https://github.com/OpenRCE/sulley

[31] S. Bansal and N. Bansal, “Scapy—A Python tool for security testing,” Journal of
Computer Science & Systems Biology, March 31, 2015.

[32] P. Joshi, P. Patel, and R. Parikh, “A fuzz testing framework for Wi-Fi devices,”
International Journal of Research in Engineering & Advanced Technology, vol.
3, no. 5, October-November 2015.

[33] H. Rafiee, C. Mueller, L. Niemeier, J. Streek, C. Sterz, and C. Meinel, “A flexible
framework for detecting IPv6 vulnerabilities,” in The 6th International
Conference on Security of Information Networks, Aksaray, Turkey, 2013.

[34] A. Lahmadi, C. Bernardini, and O. Festor, “A testing framework for discovering
vulnerabilities in 6LoWPAN networks,” in 8th International Conference on
Distributed Computing in Sensor Systems (DCOSS2012), Hangzhou, China.,
2012.

 148

[35] P. Tsankov, T. Dashti, and D. Basin, “SECFUZZ: Fuzz-testing security
protocols,” in 7th International Workshop on Automation of Software Test,
Zurich, Switzerland, 2012.

[36] A. G. Voyiatzis, K. Katsigiannis, and S. Koubias, A Modbus/TCP Fuzzer for
Testing Internetworked Industrial Systems, IEEE, 2015.

[37] MODICON, Inc., Industrial Automation Systems, Modicon Modbus Protocol
Reference Guide, North Andover, MA: MODICON, Inc., Industrial Automation
Systems, 1996.

[38] R. Sprabery, T. Morris, and S. P. V. Madani, “Protocol mutation intrusion
detection for synchrophasor communications,” in Eighth Annual Cyber Security
and Information Intelligence Research Workshop, Oak Ridge, TN, 2012.

[39] Rockwell Automation, “MicroLogix Programmable Controllers Selection Guide,”
Milwaukee, WI, USA, 2015. Accessed January 24, 2017. [Online]. Available:
http://literature.rockwellautomation.com/idc/groups/literature/documents/sg/1761-
sg001_-en-p.pdf

[40] Allen-Bradley Rockwell Automation, “ControlLogix 5570 Controllers,” accessed
January 23, 2017. [Online]. Available: http://ab.rockwellautomation.com/
Programmable-Controllers/ControlLogix/5570-Controllers#overview

[41] ICS-CERT, “Advisory (ICSA-17-138-03) Rockwell Automation MicroLogix
1100 Controllers,” July 18, 2017. [Online]. Available: https://ics-cert.us-
cert.gov/advisories/ICSA-17-138-03

 149

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	AB/RA Allen Bradley/Rockwell Automation
	I. INTRODUCTION
	A. MOTIVATION
	B. RELEVANCE TO THE NAVY
	C. OBJECTIVES
	D. THESIS ORGANIZATION

	II. BACKGROUND
	A. COMMON INDUSTRIAL PROTOCOL (CIP)
	B. EtherNet/Industrial Protocol (EtherNet/IP)
	C. Programmable Controller Communication Commands (PCCC)
	D. Fuzz Testing
	E. ICS Fuzzers
	F. Scapy
	G. Previous Scapy-based Fuzzing
	H. Allen-Bradley / Rockwell Automation PLCs (MicroLogix 1100 and CongrolLogix 5570)

	III. DESIGN
	A. Objectives
	B. Methodology
	C. Test Environment

	IV. Implementation and TEST PLAN
	A. Fuzzer implEmentation
	1. FUZZER MODIFICATIONS FOR MICROLOGIX
	2. FUZZER MODIFICATIONS FOR CONTROLLOGIX

	B. ENIP FUZZING TEST PLAN
	1. ENIP ListServices Command
	2. ENIP UnRegisterSession Command
	3. ENIP SendRRData Command
	4. ENIP SendUnitData Command
	5. ENIP Reserved for Legacy Use Commands
	6. ENIP Reserved for Future Use Commands

	C. CIP fUZZING TEST PLAN
	1. CIP Get_Attributes_All
	2. CIP Get_Attribute_List
	3. CIP Get_Attribute_Single
	4. CIP Find_Next_Object_Instance

	D. PCCC fUZZING TEST PLAN
	1. PCCC Echo Command
	2. PCCC Protected Typed File Read
	3. PCCC Protected Typed File Write
	4. PCCC Protected Typed Logical Write with Three Address Fields
	5. PCCC Unprotected Read
	6. PCCC Diagnostic Status
	7. PCCC Read Diagnostic Counters
	8. PCCC Restart
	9. PCCC Download Completed
	10. PCCC Protected Logical Read with Three Address Fields Command on ControlLogix

	V. Test Analysis
	A. ENIP Test Results
	1. ENIP ListServices Results
	a. T1 and T2 Test Cases
	b. T3 and T4 Test Cases
	c. T5 and T6 Test Cases
	d. T7 and T8 Test Cases

	2. ENIP UnRegisterSession Results
	a. T9 Test Case
	b. T10 Test Case
	c. T11 Test Case
	d. T12 Test Case
	e. T13 Test Case

	3. ENIP SendRRData Results
	a. T14 Test Case
	b. T15 Test Case
	c. T16 Test Case
	d. T17 Test Case
	e. T18 Test Case
	f. T19 Test Case

	4. ENIP SendUnitData Results
	a. T20 to T23 Test Cases
	b. T24 Test Case
	c. T25 Test Case

	5. ENIP Reserved for Legacy Use Results
	a. T26 and T27 Test Cases

	6. ENIP Reserved for Future Use Results
	a. T28 and T29 Test Cases

	B. CIP Test Results
	1. CIP Get_Attributes_All Results
	a. T30 Test Case
	b. T31 Test Case

	2. CIP Get_Attribute_List Results
	a. T32 Test Case
	b. T33 Test Case
	c. T34 Test Case
	d. T35 Test Case

	3. CIP Get_Attribute_Single Results
	a. T36 Test Case
	b. T37 Test Case
	c. T38 Test Case

	4. CIP Find_Next_Object_Instance Results
	a. T39 Test Case
	b. T40 Test Case
	c. T41 Test Case

	C. PCCC Test Results
	1. PCCC Echo Results
	a. T42 to T51 Test Cases

	2. PCCC Protected Typed File Read Results
	a. T52-T55 Test Cases

	3. PCCC Protected Typed File Write Results
	a. T56-T60 Test Cases

	4. PCCC Protected Logical Write with Three Address Fields Results
	a. T61 Test Case
	b. T62-T65 Test Cases

	5. PCCC Unprotected Read Results
	a. T66-T67 Test Cases

	6. PCCC Diagnostic Status Results
	a. T68 Test Case

	7. PCCC Read Diagnostic Counters Results
	a. T69 Test Case
	b. T70 Test Case

	8. PCCC Restart Results
	a. T71 Test Case

	9. PCCC Download Completed Results
	a. T72 Test Case

	10. PCCC Protected Logical Read with Three Address Fields on ControlLogix Results
	a. T73 Test Case

	D. Discussion

	VI. Conclusion and Further Work
	A. Summary
	B. Future Work

	Appendix A. ENIP command responses
	A. ENIP ListServices Test Cases
	(1) T1 Results
	(2) T2 Results
	(3) T3 Results
	(4) T4 Results
	(5) T5 Results
	(6) T6 Results
	(7) T7 Results
	(8) T8 Results

	B. ENIP UnregisterSession Test Cases
	(1) T9 Results
	(2) T10 Results
	(3) T11 Results
	(4) T12 Results
	(5) T13 Results

	C. ENIP SendRRdata Test Cases
	(1) T14 Results
	(2) T15 Results
	(3) T16 Results
	(4) T17 Results
	(5) T18 Results
	(6) T19 Results

	D. ENIP SendUnitData Test Cases
	(1) T20 Results
	(2) T21 Results
	(3) T22 Results
	(4) T23 Results
	(5) T24 Results
	(6) T25 Results

	E. ENIP Reserved for Legacy Use Test Cases
	(1) T26 Results
	(2) T27 Results

	F. ENIP Reserved for Future Use Test Cases
	(1) T28 Results
	(2) T29 Results

	Appendix B. CIP Command responses
	A. CIP Get_Attributes_All Test Cases
	(1) T30 Results
	(2) T31 Results

	B. CIP Get_Attribute_List Test Cases
	(1) T32 Results
	(2) T33 Results
	(3) T34 Results
	(4) T35 Results

	C. CIP Get_Attribute_Single Test Cases
	(1) T36 Results
	(2) T37 Results
	(3) T38 Results

	D. CIP Find_Next_Object_Instance Test Cases
	(1) T39 Results
	(2) T40 Results
	(3) T41 Results

	Appendix C. PCCC Command responses
	A. PCCC Echo Test Cases
	(1) T42 Results
	(2) T43 Results
	(3) T44 Results
	(4) T45 Results
	(5) T46 Results
	(6) T47 Results
	(7) T48 Results
	(8) T49 Results
	(9) T50 Results
	(10) T51 Results

	B. PCCC Protected Typed File Read Test Cases
	(1) T52 Results
	(2) T53 Results
	(3) T54 Results
	(4) T55 Results

	C. PCCC Protected Typed File Write Test Cases
	(1) T56 Results
	(2) T57 Results
	(3) T58 Results
	(4) T59 Results
	(5) T60 Results

	D. PCCC Protected Logical Write with Three Address Fields Test Cases
	(1) T61 Results
	(2) T62 Results
	(3) T63 Results
	(4) T64 Results
	(5) T65 Results

	E. PCCC Unprotected Read Test Cases
	(1) T66 Results
	(2) T67 Results

	F. PCCC Diagnostic Status Test Cases
	(1) T68 Results

	G. PCCC Read Diagnostic Counters Test Cases
	(1) T69 Results
	(2) T70 Results

	H. PCCC Restart Test Cases
	(1) T71 Results

	I. PCCC Download Completed Test Cases
	(1) T72 Results

	J. PCCC Protected Logical Read with Three Address Fields Test Cases
	(1) T73 Results

	List of References
	initial distribution list

